\documentclass[12pt]{article} \usepackage{color} \usepackage{graphics} \setlength{\textheight}{260mm} \setlength{\textwidth}{160mm} \setlength{\oddsidemargin}{0mm} \setlength{\evensidemargin}{8mm} \setlength{\topmargin}{-1.0in} \thispagestyle{empty} %\renewcommand{\baselinestretch}{2.0} % %******************************************************************************* % % (symbolsRL.tex; short version: Jan.96; R.Liseau) % %******************************************************************************* % % Journals and references % %*******************************************************************************% \newcommand{\rf}{\par\noindent\hangindent 15pt {}} % \newcommand{\apj}[2]{ApJ #1, #2} \newcommand{\aps}[2]{ApJS #1, #2} %ApJ Suppl. % \newcommand{\am}[2]{A\&A #1, #2} \newcommand{\as}[2]{A\&AS #1, #2} %AA Suppl. \newcommand{\ar}[2]{A\&AR #1, #2} %AA Rev. % \newcommand{\aj}[2]{AJ #1, #2} % \newcommand{\ara}[2]{ARA\&A #1, #2} %Ann.Rev.Astron.Astrophys. \newcommand{\af}[2]{Afz #1, #2} %Astrofizica \newcommand{\asp}[2]{Ap\&SS #1, #2} %Astronomy and Space Science \newcommand{\baas}[2]{BAAS #1, #2} %Bull.Americ.Astron.Soc. % \newcommand{\physb}[2]{J. Phys. B: At. Mol. Opt. Phys. #1, #2} %J.Phys. B \newcommand{\mn}[2]{MNRAS #1, #2} %Monthly Notices \newcommand{\qj}[2]{QJRAS #1, #2} %Quart.Journ.Roy.Astron.Soc. \newcommand{\nat}[2]{Nature #1, #2} %Nature % \newcommand{\pasp}[2]{PASP #1, #2} %Pacific \newcommand{\pasppc}[2]{PASPC #1, #2} %PASP, Conference Proceedings \newcommand{\pasj}[2]{PASJ #1, #2} %Japan \newcommand{\rmaa}[2]{Rev. Mex. Astron. Astrof. #1, #2} %Mexico \newcommand{\msai}[2]{Mem. Soc. Astron. Ital. #1, #2} %Italy % \newcommand{\sci}[2]{Sci #1, #2} %Science \newcommand{\sova}[2]{SvA #1, #2} %Sovjet Astronomy % % \newcommand{\etal}{et\,al.} % % %******************************************************************************* % % Units % %******************************************************************************* % \newcommand{\cmone}{cm$^{-1}$} %cm^n \newcommand{\cmtwo}{cm$^{-2}$} \newcommand{\cmthree}{cm$^{-3}$} \newcommand{\cmq}{cm$^{2}$} \newcommand{\cmc}{cm$^{3}$} % \newcommand{\pcone}{pc$^{-1}$} %pc^n \newcommand{\pctwo}{pc$^{-2}$} \newcommand{\pcthree}{pc$^{-3}$} \newcommand{\pcq}{pc$^{2}$} \newcommand{\pcc}{pc$^{3}$} % \newcommand{\kpcone}{kpc$^{-1}$} %kpc^n \newcommand{\kpctwo}{kpc$^{-2}$} \newcommand{\kpcthree}{kpc$^{-3}$} \newcommand{\kpcq}{kpc$^{2}$} \newcommand{\kpcc}{kpc$^{3}$} % \newcommand{\kms}{km\,s$^{-1}$} %km/s \newcommand{\kmspc}{km\,s$^{-1}$\,pc$^{-1}$} %km/s/pc \newcommand{\kmsau}{km\,s$^{-1}$\,AU$^{-1}$} %km/s/AU % \newcommand{\vlsr}{$v_{\rm LSR}$} %velocities \newcommand{\vhel}{$v_{\rm hel}$} \newcommand{\dv}{$\Delta v$} \newcommand{\vs}{$v_{s}$} \newcommand{\vsh}{\v$_{shock}$} \newcommand{\vr}{v$_{r}$} \newcommand{\vrad}{v$_{rad}$} \newcommand{\vt}{v$_{t}$} % \newcommand{\ta}{$T_{\rm A}$} %temperatures \newcommand{\tas}{$T^{*}_{\rm A}$} \newcommand{\trms}{$T_{\rm rms}$} \newcommand{\tr}{$T_{\rm R}$} \newcommand{\trs}{$T^{*}_{\rm R}$} \newcommand{\te}{$T_{\rm e}$} \newcommand{\texc}{$T_{\rm ex}$} % \newcommand{\es}{erg s$^{-1}$} %energy cgs \newcommand{\ecs}{erg cm$^{-2}$ s$^{-1}$} \newcommand{\ecssr}{erg cm$^{-2}$ s$^{-1}$ sr$^{-1}$} \newcommand{\ecsaa}{erg cm$^{-2}$ s$^{-1}$ \AA$^{-1}$} \newcommand{\ecsaasr}{erg cm$^{-2}$ s$^{-1}$ \AA$^{-1}$ sr$^{-1}$} \newcommand{\ecsmu}{erg cm$^{-2}$ s$^{-1}$ $\mu$m$^{-1}$} \newcommand{\ecsmusr}{erg cm$^{-2}$ s$^{-1}$ $\mu$m$^{-1}$ sr$^{-1}$} % \newcommand{\wc}{W cm$^{-2}$} %energy cgs-SI \newcommand{\wcmu}{W cm$^{-2}$ $\mu$m$^{-1}$} \newcommand{\wchz}{W cm$^{-2}$ Hz$^{-1}$} % \newcommand{\wm}{W m$^{-2}$} %energy SI \newcommand{\wmmu}{W m$^{-2}$ $\mu$m$^{-1}$} \newcommand{\wmhz}{W m$^{-2}$ Hz$^{-1}$} % \newcommand{\um}{$\mu$m} %micron % \newcommand{\molh}{H$_{2}$} %H_2, H_2O and H II \newcommand{\molha}{molecular hydrogen} \newcommand{\molhb}{hydrogen molecules} \newcommand{\water}{H$_{2}$O} \newcommand{\watera}{water vapor} \newcommand{\waterb}{H$_{2}$O molecules} \newcommand{\waterc}{H$_{2}$O maser} \newcommand{\htwo}{H \, {\sc ii}} \newcommand{\nhthree}{NH$_{3}$} % \newcommand{\lsun}{L$_{\odot}$} %solar and terr. units \newcommand{\msun}{M$_{\odot}$} \newcommand{\rsun}{R$_{\odot}$} \newcommand{\mdot}{\.{M}} \newcommand{\msunyr}{M$_{\odot} \, {\rm yr}^{-1}$} \newcommand{\mearth}{M$_{\oplus}$} \newcommand{\rearth}{R$_{\oplus}$} \newcommand{\mmoon}{M$_{\rm Moon}$} % %******************************************************************************* % % SYMBOLS % %******************************************************************************* % \newcommand{\circumflex}{{$_{\widetilde{~~}}$}} \newcommand{\gapprox}{$\stackrel {>}{_{\sim}}$} %greater/less approx. \newcommand{\lapprox}{$\stackrel {<}{_{\sim}}$} \newcommand{\about}{$\sim$} %approx \newcommand{\pdown}[1]{\mbox{$_{#1}$}} %subscript \newcommand{\ppdown}[2]{\mbox{$_{#1_{#2}}$}} %double subscript % \newcommand{\pupdown}[2]{\mbox{$^{#1}_{#2}$}} %sub and superscript % \newcommand{\pow}[2]{\mbox{#1$^{#2}$}} %superscript and powers \newcommand{\powtwo}[1]{2$^{#1}$} \newcommand{\powsix}[1]{6$^{#1}$} \newcommand{\powten}[1]{10$^{#1}$} % \newcommand{\halpha}{H$\alpha$} %H I recombination lines \newcommand{\hbeta}{H$\beta$} \newcommand{\bralpha}{Br$\alpha$} \newcommand{\brgamma}{Br$\gamma$} \newcommand{\pfgamma}{Pf$\gamma$} \newcommand{\ctwo}{[C\,{\sc ii}]\,158\,$\mu$m} %fine structure lines \newcommand{\csix}{[C\,{\sc i}]\,609\,$\mu$m} \newcommand{\cthree}{[C\,{\sc i}]\,370\,$\mu$m} \newcommand{\oishort}{[O\,{\sc i}]\,63\,$\mu$m} \newcommand{\oilong}{[O\,{\sc i}]\,145\,$\mu$m} \newcommand{\sitwo}{[Si\,{\sc ii}]\,35\,$\mu$m} \newcommand{\fetwo}{[Fe\,{\sc ii}]\,26\,$\mu$m} \newcommand{\oknot}{{\rm O}$^0$} \newcommand{\cknot}{{\rm C}$^0$} \newcommand{\cplus}{{\rm C}$^+$} \newcommand{\pzero}{$^{3}{\rm P}_{0}$} \newcommand{\pone}{$^{3}{\rm P}_{1}$} \newcommand{\ptwo}{$^{3}{\rm P}_{2}$} \newcommand{\phalf}{$^{2}{\rm P}_{1/2}$} \newcommand{\pthreehalf}{$^{2}{\rm P}_{3/2}$} % \newcommand{\av}{$A_{\rm V}$} %extinction \newcommand{\magn}{$^{\rm m}$} \newcommand{\ebv}{$E_{\rm B-V}$} \newcommand{\pah}{{\sc Pah}} % \newcommand{\bpic}{$\beta \, {\rm Pic}$} %sources \newcommand{\ro}{$\rho \, {\rm Oph}$} \newcommand{\roc}{$\rho \, {\rm Oph \, cloud}$} \newcommand{\scc}{${\rm Serpens \, cloud \, core}$} \newcommand{\xctwo}{$\chi_{_{\rm C\,II}}$} \newcommand{\cloudy}{{\sc Cloudy}} \newcommand{\nir}{{\sc Nir}} \newcommand{\fir}{{\sc Fir}} \newcommand{\pdr}{{\sc Pdr}} \newcommand{\lte}{{\sc Lte}} \newcommand{\eso}{{\sc Eso}} %organisations \newcommand{\esa}{{\sc Esa}} \newcommand{\nasa}{{\sc Nasa}} \newcommand{\isas}{{\sc Isas}} \newcommand{\iraspsc}{IRAS Point Source Catalogue} \newcommand{\iras}{{\sc Iras}} \newcommand{\cobe}{{\sc Cobe}} \newcommand{\sest}{{\sc Sest}} %telescopes \newcommand{\jcmt}{{\sc Jcmt}} \newcommand{\iso}{{\sc Iso}} \newcommand{\kao}{{\sc Kao}} \newcommand{\lws}{{\sc Lws}} \newcommand{\sws}{{\sc Sws}} \newcommand{\cam}{{\sc Cam}} \newcommand{\isocam}{{\sc Isocam}} \newcommand{\cvf}{{\sc Cvf}} \newcommand{\fov}{{\sc Fov}} \newcommand{\hpbw}{{\sc Hpbw}} \newcommand{\fwhm}{{\sc Fwhm}} \newcommand{\bice}{{\sc Bice}} \newcommand{\mgd}{$m_{\rm gas}/m_{\rm dust}$} %gas-to-dust % \newcommand{\amin}{$^{\prime}$} %arcus and coordinates \newcommand{\asec}{$^{\prime \prime}$} \newcommand{\adeg}{$^{\circ}$} \newcommand{\mas}{\mbox {\rm mas}} \newcommand{\muas}{\mbox {$\mu$\rm as}} \newcommand{\afifty}{$\alpha_{1950.0}$} \newcommand{\dfifty}{$\delta_{1950.0}$} \newcommand{\rahms}[3]{\mbox{#1$^{\rm h}$#2$^{\rm m}$#3$^{\rm s}$}} \newcommand{\radot}[4]{\mbox{#1$^{\rm h}$#2$^{\rm m}$#3$\stackrel{\rm s} {_{\bf\cdot}}$#4}} \newcommand{\decdms}[3]{\mbox{#1$^{\circ}$#2$^{\prime}$#3$^{\prime \prime}$}} \newcommand{\decdot}[4]{\mbox{#1$^{\circ}$ #2$^{\prime}$ #3$\stackrel {\prime \prime}{_{\bf \cdot}}$#4}} \newcommand{\adegdot}[2]{\mbox{#1$\stackrel {\circ}{_{\bf \cdot}}$#2}} \newcommand{\amindot}[2]{\mbox{#1$\stackrel {\prime}{_{\bf \cdot}}$#2}} \newcommand{\asecdot}[2]{\mbox{#1$\stackrel {\prime \prime}{_{\bf \cdot}}$#2}} \newcommand{\ltwo}{$\ell^{\small \rm II}$} \newcommand{\btwo}{$b^{\small \rm II}$} \newcommand{\gdeg}[2]{\mbox{#1$\stackrel{\circ}{_{\bf\cdot}}$#2}} % % %=============================================================================== % \begin{document} First detection of the \nhthree\,($J, \,K = 1,0\rightarrow 0,0$) 572.5\,GHz line from a dark cloud \normalsize \section{Introduction} Already from early molecular line work it was clear that \ro\,A is a particularly dense core in the star forming \roc\ (Loren et al. 19XX, Wilking \& Lada 19XX). The spectacular Class\,0 source VLA\,1623 at its southern tip is believed to be extremely young (Andr\'e et al. 19XX), driving a highly collimated molecular outflow (Dent et al. 19XX). \section{Observations and data reductions} The observations of \ro\,A in the 572.5\,GHz line of \nh3\ were performed with Odin, a Swedish-international satellite (Canada, Finland, France) for aeronomy and astronomy. The satellite and its payload have been reviewed by (references...). At the frequency of the \nhthree\,(1,0-0,0) line, 572.49XXXX\,GHz, the beam of the 1.1\,m telescope is 120\asec, confirmed by observations of the planet Jupiter. Further, the pointing accuracy has been determined to be better than 15\asec\ and the main beam efficiency to be 95\%. A three point strip scan was made along position angle 68\adeg, centered on \radot{16}{26}{24}{9}, \decdms{-24}{23}{44} (J2000) and with relative offsets of 45\asec. The southwest position is coincident with the bright CO\,(3-2) knot in the red outflow (Dent et al. 19XX) and the northeast position is that of CS\,(5-4) maximum emission (Liseau, unpublished SEST data). The front-end is a cooled (120\,K) Schottky receiver and observations were obtained in Dicke-switched mode, with total integration times per position of XXXX seconds. In addition, a XXXX\,s observation was made toward an OFF position 1\adeg\ north of the source. Tunable over a range of 17\,GHz, the instantaneous bandwidth is 1\,GHz. The 10000 channels of the Acousto Optical Spectrometer (AOS) had a selected width of XXkHz (0.32\,\kms). The 572\,Ghz receiver was known not to be phase locked, but reasonably well tuned in frequency. The frequency stability of the receiver was monitored using the telluric ozone line at XXXX\,GHz (Fig.\ref{ozone.ps}). This established that during the observations of \ro\,A the frequency drift was at most one channel, allowing the individual scans to be co-added into a total average. \section{Results} \section{Discussion} \section{Conclusions} \end{document}