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the flow to leading order is in thermal wind balance, namely

Ω ρ ρ∇ ∇⋅ = ′ ×u g2 ( ) (1)s

where Ω is the planetary rotation rate vector, u is the velocity field, ρs 
and ρ′ are the static and dynamic components of the density, respec-
tively, and g is the gravity obtained by integrating ρs (see Methods)14. 
Non-spherical effects can play a part in this balance (for example, the 
deviation of g from radial symmetry)15,16; however, it has been shown 
that to leading order equation (1) captures the dynamical balance 
well16,17 (Extended Data Fig. 1). As the gravity harmonics induced by 
the flow are related to ρ′ directly, we can relate the flow field and the 
gravity spectrum. Thus, given the measured gravitational field, inver-
sion of equation (1) allows us to infer the flow profile that best matches 
the measurements. For this inversion we use an optimization based on 
the adjoint method9 (see Methods).

The relation between the odd gravity harmonics and the flow is 
shown in Fig. 2 for a simple model6 where the depth of the cloud-level 
wind is parameterized with a single decay parameter, H. In this sce-
nario, the interior flow is an extension of the cloud-level flow, along 
the direction of the spin axis owing to angular momentum constraints 
(see below)14,18, but decaying exponentially in radius with H being the 
e-folding decay depth6,19. The Juno-measured values (Fig. 2, dashed 
lines), show that for all four harmonics, independently, the theoretical 
values6 capture the correct sign of the measured harmonics and indi-
cate that the e-folding decay depth of the flow is between 1,000 km and 
3,000 km (Fig. 2, grey shading). Inverting the gravity field9, taking into 
consideration the uncertainties of each of the measured harmonics and 
their cross-correlated uncertainties (the error covariance matrix, see 
Methods), gives an e-folding decay depth of about 1,500 km. We note, 
however, that the measured value of J5 deviates by a factor of about two 
from the corresponding theoretical value of a single-parameter deep 
wind profile, suggesting that a more elaborate vertical flow profile than 
the simple exponential decay is needed to match the data.

Given that the measurements provide four non-zero odd gravity har-
monics, a more complex optimization of the vertical and meridional 
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Table 1 | The Juno-measured and model odd gravity harmonics

Harmonic Measured
Model without 
latitudinal variation

Model with  
latitudinal variation

J3 (×10−8) −4.24 ± 0.91 −5.71 ± 1.67 −5.96 ± 2.33
J5 (×10−8) −6.89 ± 0.81 −7.73 ± 0.41 −8.00 ± 0.43
J7 (×10−8) 12.39 ± 1.68 12.77 ± 0.54 12.04 ± 0.70
J9 (×10−8) −10.58 ± 4.35 −8.84 ± 0.42 −9.71 ± 0.72

Model results are shown for optimizations with and without variation of flow depth with latitude. 
The uncertainties are the 3σ uncertainty values. The model uncertainty is calculated by the 
optimization procedure (Methods). For the middle (right) column the Jn values correspond to the 
parameter values given in the caption of Fig. 3 (Fig. 4).

The depth to which Jupiter’s observed east–west jet streams extend 
has been a long-standing question1,2. Resolving this puzzle has 
been a primary goal for the Juno spacecraft3,4, which has been in 
orbit around the gas giant since July 2016. Juno’s gravitational 
measurements have revealed that Jupiter’s gravitational field 
is north–south asymmetric5, which is a signature of the planet’s 
atmospheric and interior flows6. Here we report that the measured 
odd gravitational harmonics J3, J5, J7 and J9 indicate that the 
observed jet streams, as they appear at the cloud level, extend 
down to depths of thousands of kilometres beneath the cloud level, 
probably to the region of magnetic dissipation at a depth of about 
3,000  kilometres7,8. By inverting the measured gravity values into a 
wind field9, we calculate the most likely vertical profile of the deep 
atmospheric and interior flow, and the latitudinal dependence of its 
depth. Furthermore, the even gravity harmonics J8 and J10 resulting 
from this flow profile also match the measurements, when taking 
into account the contribution of the interior structure10. These 
results indicate that the mass of the dynamical atmosphere is about 
one per cent of Jupiter’s total mass.

The Juno gravity measurements so far have improved the accuracy 
of the known gravity harmonics J2, J4, J6 and J8 by more than two 
orders of magnitude5,11. These low-degree even gravity harmonics are 
mostly affected by Jupiter’s interior density structure and its shape12, 
and therefore, although the signal from these harmonics may contain 
a contribution13 from the atmospheric and interior flows (ΔJn), it is 
difficult to use these harmonics to infer information about the flows 
directly. The gravity measurements also revealed north–south asym-
metries in Jupiter’s gravity field5, which are manifested as large values 
of the odd gravity harmonics J3, J5, J7 and J9 (see Table 1). Because 
a gas planet rotating as a solid body has no asymmetry between 
north and south, any non-zero value of the odd Jn must come from 
dynamics6. As the observed cloud-level flow is not hemispherically 
symmetric (Fig. 1), if enough mass is involved in the asymmetric 
component of the flow it will produce large odd Jn. Although the flow 
is also expected to dominate the high-degree harmonics3, the gravity 
harmonics beyond J10 are still beneath the level of the measurement 
uncertainty5. In addition, because the low-degree even Jn are domi-
nated by solid-body rotation, the only current measurements that can 
be uniquely related to the dynamics are the low-degree odd harmonics 
J3 to J9. Therefore, in this study, we use only those to infer the depth 
of the cloud-level winds.

Because Jupiter is rotating with a short period of 9.92 h, the flow 
within the planet to leading order is in geostrophic balance, meaning 
that the momentum budget is dominated by the balance between the 
Coriolis force and the horizontal pressure gradients. As a consequence, 
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profiles of the zonal flow is indeed feasible. Motivated by the Galileo 
probe measurement of a relatively constant wind profile20 between 4 bar 
and 22 bar, and magnetohydrodynamic theory suggesting that ohmic 
dissipation will cause a more abrupt decay of the flow at depth7,8,21,22, 
we add—in addition to the exponential decay function used in the first  
estimate (Fig. 2)—a vertical decay profile expressed as a hyperbolic  
tangent (‘tanh’) function and a free parameter α, representing the ratio 
between the two functions. This allows for a much wider range of ver-
tical decay profiles, with three free parameters defining the vertical 
profile of the flow: the depth H represents the inflection point of the 
tanh function, ΔH represents the decay width of the tanh function 
and α is the ratio between the tanh function and an exponential decay 
with the same decay depth H. Using these three parameters as con-
trol parameters in the inverse adjoint model, the optimization process  
(Fig. 3) minimizes a cost function, taking into account the uncertainties 
in the gravity measurements, including the error covariance between 
the different harmonics (Methods)9,23.

Beginning with an assumed vertical decay profile as an initial  
condition (dashed line in Fig. 3a and black squares in Fig. 3b, c), 
the optimization iteratively minimizes the cost function, reaching a 
unique global minimum in the three-dimensional parameter space 
of H, ΔH and α (red dot in Fig. 3b, c). The best optimized solution, 
defining a particular vertical profile of the zonal flow (red line in  
Fig. 3a), is achieved with H = 1,803 ± 351 km, ΔH = 1,570 ± 422 km 
and α = 0.92 ± 0.26, where the error is calculated by the optimization 
process (see Methods), indicating a very deep flow profile containing 
a large mass. We note that the minimum of the cost function for ΔH 
is rather flat towards lower ΔH (Fig. 3b), indicating that a flow pro-
file with a much more abrupt decay at depth is compatible with the 
measured Jn. Integrating the density profile ρs down to where the flow 
decreases noticeably (about 3,000 km) reveals that this region contains 
about 1% of Jupiter’s mass (the mass dependence on depth is shown in 
Extended Data Fig. 2). This large mass of the dynamical atmosphere 
(the region that is differentially rotating) is consistent with the persis-
tence of the observed jets over the past several decades2. In an accom-
panying paper10 we show that, on the basis of the even harmonics, 
beneath this dynamical atmosphere, in Jupiter’s deep interior, there is 
probably very little zonal flow. The angular momentum of this flow is 
about 2 × 10−5 that of the solid-body rotating planet.

The solution shown in Fig. 3a (red line) implies that the meridional 
profile of the flow at depth is strongly correlated with the cloud-level 
flow. To test the statistical significance of this solution we generate a 

large set of synthetic zonal wind profiles (Extended Data Fig. 3) by 
expanding the observed flow up to high-degree Legendre polynomi-
als and summing them back up while assigning random signs to the 
expansion coefficients. We find that the solution using the observed 
cloud-level wind profile (Extended Data Fig. 4, black) is one of the 
closest solutions to the measurements (Extended Data Fig. 4, red) and 
only a very small subset of the random flow profiles (less than 1%) 
give a lower cost-function value (Extended Data Fig. 4, green). This 
shows that it is statistically improbable that the meridional profile of 
the flow changes with depth, or that the solution was found by chance 
(see further discussion in Methods).

Considering the angular momentum budget is helpful for developing 
a mechanistic understanding of these deep dynamics. Modelling studies 
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Figure 1 | Jupiter’s asymmetric zonal velocity 
field. a, The cloud-level zonal flows (thick black 
line) as a function of latitude, as measured during 
Juno’s third perijove pass on 11 December 2016 
(ref. 30). The image of Jupiter was taken by the 
Hubble Wide Field Camera in 2014 (https://
en.wikipedia.org/wiki/Jupiter). Grid latitudes are 
as in b and the longitudinal spread is 45°. Zonal 
flow scale is the same as the longitudinal grid 
on the sphere. b, The asymmetric component 
of the flow, taken as the difference between the 
northern and southern hemisphere cloud-level 
flows.
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Figure 2 | The odd gravity harmonics as function of a single e-folding 
decay depth parameter H. The predicted values6 (solid) and the Juno-
measured values5 (dashed, corresponding to the values in Table 1) for J3 
(red), J5 (blue), J7 (magenta) and J9 (orange) are shown as functions of H. 
All four gravity harmonic measurements, independently, indicate that the 
e-folding depth of the flow is 1,000–3,000 km (grey shading). All four odd 
harmonics are small if the flows are shallow, and become large for deeper 
flows that contain more mass. The change in sign at different decay depths 
depends on the way the flow pattern projects onto the different Legendre 
polynomials.
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have suggested18,21 that the leading-order angular momentum balance 
is u⋅∇M = D − S, where u is the mass-averaged velocity, M is the total 
angular momentum, D is the drag due to the Lorentz force at depth and 

ρ ρ∇= / ⋅ ′ ′uS M(1 ) ( ) is the eddy angular momentum flux divergence, 
with the overbar indicating a zonal and temporal mean. At the observed 
cloud level, the eastward (westward) jets are correlated with regions of 
eddy momentum flux convergence (divergence), that is, where S is neg-
ative (positive)21,24. Below that, where the eddy momentum flux con-
vergence is expected to become weak24, that is, u⋅∇M ≈ 0, the flow is 
along angular momentum surfaces, which on Jupiter are almost entirely 
parallel to the axis of rotation14,18,25. Then, in the deep region, where 
the fluid becomes electrically conducting (mainly due to pressure ion-
ization) and the Lorentz force may become important (depending on 
the magnetic field structure) the leading-order balance is u⋅∇M = D 
and the circulation closes. Kinematic dynamo models, which calculate 
the magnetic drag at depth on the basis of the radially varying electric 
conductivity inside Jupiter, find that the depth at which the Lorentz 
drag D becomes important7,8 is about 3,000 km. Thus, the theoretical 
magnetic field considerations and the gravity measurements, which are 
completely independent, give very consistent results.

Three-dimensional hydrodynamic models of Jupiter, driven by shal-
low atmospheric turbulence21,26 or deep internal convection14, have 
found that the low latitudes are often more barotropic than the high 
latitudes. Thus, an additional level of complexity that can be added 
to the optimization is allowing the decay depth H to vary with lati-
tude. To limit the number of optimized parameters, the decay depth 
is expanded in Legendre polynomials to second order, increasing the 
number of optimized parameters to four (see Methods). Similarly to 
the case of a latitudinally independent vertical profile (Fig. 3), in this 
case the optimized vertical decay profile is rather barotropic at lower 
depths and extends to great depth (Fig. 4a). The optimization uncer-
tainty is shown graphically by the blue shading, with the values for the 
profile at the equator given in the caption. At higher latitudes, the ver-
tical decay occurs at shallower depths, and the associated uncertainty 
grows to approximately 500 km (Fig. 4b). The values of Jn correspond-
ing to the solutions of Figs 3 and 4 appear in Table 1. We note that with 
more free parameters than used in these optimizations, closer matches 

to the measurements can be reached. However, the power of these 
solutions is that they are based on relatively simple extensions of the 
cloud-level flow, giving results remarkably close to all four independ-
ent gravity measurements; and, regardless of the exact vertical profile, 
the solutions indicate that the observed cloud-level flows extend to 
depths of thousands of kilometres.

The flow profile determined by the odd harmonics also has a signa-
ture in the even harmonics. Owing to the uncertainty in the bulk  
interior density structure of Jupiter10,27, there is a wide range of solutions 
for the low-degree static gravity harmonics Jn

s, which does not allow us 
to test uniquely whether the ΔJn from the even harmonics matches the 
measured values via Δ = −J J Jn n n

s. However, for J8 and J10 the interior 
models are very constraining10, giving values between −245.7 × 10−8 
and −246.3 × 10−8 for J8

s, and between 20.1 × 10−8 and 20.4 × 10−8 for 
J10

s  (for interior models that also match J4 and J6). The measured Juno 
values are J8 = (−242.6 ± 0.8) × 10−8 and J10 = (17.2 ± 2.3) × 10−8, 
meaning that a positive (negative) correction by the dynamics is needed 
to match the measurements for J8 (J10). The values corresponding to the 
flow profiles presented in Figs 3 and 4 (Extended Data Table 1) are 
indeed such that for both cases, and for both J8 and J10, the dynamical 
corrections can reconcile the differences between the measurements 
and the internal models, further confirming that the inferred flow  
profile presented here matches the measurements from Juno. An accom-
panying paper10 shows that using the range of current interior models 
gives further constraints on possible deeper interior flow.

Juno’s gravity measurements are consistent with Juno’s microwave 
radiometer measurements, indicating a north–south asymmetry in 
the sub-cloud-level atmospheric composition, and a direct signature 
of the main equatorial belt to the maximum depth of the microwave  
sensitivity11,28 at about 1,000 bar. With more Juno orbits the microwave 
measurements4,29 will obtain greater and improved thermal mapping 
of the deep atmosphere, which will better constrain the water and  
ammonia abundances as well as the atmospheric flows at those  
levels. As the Juno mission completes its global mapping of Jupiter, the 
combination of the gravity, magnetic and microwave data may provide 
further insights into the coupling between Jupiter’s deep interior and 
atmospheric flows.
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Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Jupiter’s optimized vertical profile of the zonal wind when 
allowing for its latitudinal variation. a, The vertical profile of the 
flow at the equator from the optimization process (blue line) and its 
uncertainty (blue shading). The best optimized values at the equator are 
H = 2,379 ± 142 km, ΔH = 819 ± 437 km and α = 0.62 ± 0.09. The abscissa 
shows both the depth (bottom) and pressure (top) beneath the 1-bar 
level. b, The variation of the inflection point (as shown in a) with latitude 
(blue line) and its uncertainty (blue shading). Details of the latitudinal 
dependence of H and its functional form are given in Methods (equation 
(13)). c, The Juno measurement of the asymmetric gravity field Δgr (for 
J3–J9) as a function of latitude and the corresponding values from the best-
fit solution (a and b), showing a good match between the measurements 
and the optimized solution (see calculation in Methods).
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Calculation of the dynamical gravity harmonics. The gravity harmonics Jn are 
defined as a weighted integral over the interior density distribution 

∫ ρ= − − rJ Ma P r( ) dn
n

n
n1 3 , where M is the planetary mass, a is the equatorial 

radius, Pn is the nth Legendre polynomial, ρ is the local density and r is the local 
radius31. On planets with internal dynamics, the density is perturbed by the flow 
so that the total density in Jn can be written as ρ = ρs + ρ′, where the density ρs is 
the hydrostatic density resulting from the background rotation and internal density 
distribution27,32–35, and ρ′ are the density fluctuations arising from the atmospheric 
and internal dynamics19. The gravity harmonics can be similarly decomposed into 
two parts = + ΔJ J Jn n n

s , where the static component Jn
s is due to the planet’s inter-

nal density distribution and shape12,36, and the dynamical component ΔJn is due 
to the density deviations related to the flow19.

To develop the relation between the flow on Jupiter and the gravity field meas-
ured by Juno, we consider the full momentum balance on a rotating planet

Ω Ω Ω
ρ

Φ∇ ∇ ∇∂
∂

+ ⋅ + × + × × = − +
u u u u r
t

p( ) 2 1
(2)

where u is the three-dimensional flow vector, Ω is the planetary rotation rate vector 
(magnitude, 1.76 × 10−4 s−1), ρ is the density, p is the pressure and Φ is the body 
force potential set by gravity37 so that ∇Φ = −g. The first term on the left-hand 
side is the local acceleration of the flow, the second is the Eulerian advection, the 
third is the Coriolis acceleration and the fourth is the centrifugal acceleration. On 
the right-hand side are the pressure gradient and the body force. Frictional forces 
are neglected. For Jupiter parameters and large-scale motion, the Rossby number is 
small, Ro ≡ U/ΩL ≈ 0.05, where U is the typical value of the velocity O(100 m s−1) 
and L is the typical jet scale O(104 km). The small Rossby number implies that the 
first two terms are negligible compared to the Coriolis term, so that

Ω Ω Ωρ ρ ρ∇× = − − − × ×u g rp2 ( ) (3)

Because for Jupiter parameters the ratio between the two latter terms on the right-
hand side of equation (3) is Ω / ≈ .a g 0 12 , and not two orders of magnitude smaller, 
as it is for Earth parameters, we do not a priori make the traditional approximation 
merging the centrifugal force with the gravity term38, but solve for the full system, 
allowing the density, pressure and gravity to be functions of radius r and latitude 
θ. We separate the solution into a static solution in which u = 0, with the solutions 
ρs(r, θ), ps(r, θ) and gs(r, θ) of the leading-order equation

Ω Ωρ ρ∇= − − − × ×g rp0 (4)s s s s

and the deviations ρ′(r, θ), p′(r, θ) and g′(r, θ) due to the dynamics, where 
ρ = ρs + ρ′, p = ps + p′ and g = gs + g′. For the static part of the solution we use 
solutions from interior models27,39. Subtracting equation (4) from equation (3) 
gives the leading-order dynamical equation

Ω Ω Ωρ ρ ρ ρ∇× = − ′ − ′ − ′ − ′ × ×u g g rp2 ( ) (5)s s s

Taking the curl of equation (5), eliminating the dependence on pressure, yields 
a single equation in the azimuthal direction

Ω ρ ρ ρ
θ

ρ ρ
θ

Ω ρ
θ

θ ρ θ θ

− ∂ = −
∂ ′
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−
∂ ′
∂

+
∂
∂

′ − ′
∂
∂

−





∂ ′
∂
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∂ ′
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θ θr u r g
r

g r
r
g g

r
r
r

2 ( )

cos cos sin
(6)

z
r r

s s
( )

s
( ) s ( ) ( ) s

2 2

where u is the velocity component in the azimuthal direction, the superscripts (r) 
and (θ) denote the radial and latitudinal components, respectively, and the notation  

θ θ∂ ≡ +
θ

∂
∂

∂
∂

cos sinz r r
1  denotes the derivative along the direction of the axis of  

rotation. Note that this is an integro-differential equation because the gravity g′ is  
calculated by integrating ρ′. Although this equation can be solved numerically17, 
it is very difficult to solve at the required resolution and the approximation below 
is sufficient for relating the flow field and the gravity harmonics17.

A typical solution to equation (6), corresponding to the flow field in Fig. 3, is 
given in Extended Data Fig. 1. It shows that the leading-order balance is between 
the left-hand-side term and the second term on the right-hand side of equation 
(6). All other terms are at least an order of magnitude smaller, and have a very 
small contribution to the gravitational harmonics17. Thus, by taking g = gs(r) in  
equation (3) and neglecting the centrifugal term gives the leading-order solution. 
The curl of equation (3) then gives the leading-order equation—equation (1)—
which is a generalized form of the thermal wind equation14,19. We note that if a 
higher correction is desired, all terms in equation (6) must be maintained because 
the smaller terms in equation (6) partially cancel each other (Extended Data  
Fig. 1). Approximations not maintaining all these terms would be invalid15.

The zonal component of equation (1) is then

Ω ρ ρ
θ

∂ =
∂ ′
∂

r u g2 ( ) (7)z
r

s s
( )

which can be integrated to find a solution for the dynamical part of the density 
given by

∫ρ θ Ω ρ θ θ ρ′ = ∂ ′ ′ + ′
∞

r r
g

r u r r( , ) 2 ( ( ) ( , ))d ( ) (8)z
s

s 0

where ρ′ r( )0  is an unknown integration function that depends only on radius. 
Although the density ρ′ cannot be determined uniquely owing to the unknown 
ρ′ r( )0 , the gravity harmonics due to dynamics

∫ ∫θ θ θ ρ θΔ = −
π

′
−π/

π/
+J

Ma
r P r r2 cos d (sin ) ( , )d (9)n n

a
n

n

2

2

0

2

can be determined uniquely since

∫ ∫θ θ θ ρ′ =
−π/

π/
+r P r rcos d (sin ) ( )d 0 (10)

a
n

n

2

2

0

2
0

To avoid integrating over discontinuities at the equator the integration is performed 
from the equator poleward in both hemispheres separately40. Therefore, given any 
flow profile, the anomalous density gradient can be determined to leading order 
(equation (8)) and the resulting dynamical gravity harmonics can be calculated 
(equation (9)). We note that the sphericity assumption leaves the choice of using 
the equatorial radius or the mean radius for a. For consistency with the standard 
normalization5,41 of Jn we use the equatorial radius, but repeating the calculation 
with the mean radius gives results within one per cent of those presented here.
Calculation of the gravity anomaly. Equivalent to the gravity harmonics is the 
physical gravity anomaly (Fig. 4c), which emphasizes the nature of the solution as 
function of latitude19. The gravity anomaly in the radial direction on the surface 
of a planet that results from the asymmetric flow is given by

∑θ θΔ = − + Δg GM
a

n J P( ) ( 1) (sin ) (11)r
n

n n2

where G is the gravitational constant and n = 3, 5, 7 and 9. In Fig. 4c we show  
a comparison between the measured5 and the calculated gravity anomalies.  
The better match at low latitudes is a result of the measurements having smaller 
uncertainties at low latitudes owing to the trajectory of the spacecraft, which 
is at periapses near Jupiter’s lower latitudes during the initial phase of the Juno 
mission11,41.
Setup of the flow structure. Our knowledge of the flow field of Jupiter so far 
comes almost completely from cloud tracking30,42. We use this flow field as an 
upper boundary, and extend the flow into the interior by optimizing the gen-
eral functions below. Angular momentum constraints require that the flow into 
the interior follows angular momentum surfaces14,18,25 (see main text), which on 
Jupiter are nearly parallel to the direction of the axis of rotation. Magnetic drag7 
and the compressibility of the fluid14 require that the flow decays at some depth, 
and therefore we use a flow field with the following general structure

θ =u r u s Q r( , ) ( ) ( ) (12)cyl

where ucyl(s) is the cloud-level azimuthal wind projected downward along the 
direction of the axis of rotation, and θ=s rcos( ) is the distance from the axis of 
rotation. Q(r) is the radial decay function we optimize, given by

α
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− +

+
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− −
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Δ
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( )

Q r r a
H

( ) (1 )exp
( )

tanh 1

tanh 1
(13)

a H r
H

H
H

( )

( )

where a is the planetary radius, α is the contribution ratio between an exponential 
and a normalized hyperbolic tangent function and ΔH is the width of the hyper-
bolic tangent. We take a hierarchal approach using this profile at several levels of 
complexity. First, setting α = 0, the flow is parameterized as a simple exponential 
decay, with H being independent of latitude, as has been done in many previous 
studies6,10,19,43,44. Then, allowing 0 < α < 1, the flow is parameterized (Fig. 3), with 
three free parameters—α, H and ΔH—as they appear in equation (13), but still 
keeping H as a single number. As a final step (Fig. 4), H is allowed to vary as a 
function of latitude and defined as
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θ θ= +H H H P( ) (sin ) (14)0 2 2

where H0 is the single latitude-independent depth used in the first and second 
setups, and H2 is the additional parameter used to set the amplitude of the latitude- 
dependent second Legendre polynomial function P2. For the optimization shown 
in Fig. 4 the values are H0 = 1,619 ± 150 km and H2 = −1,519 ± 459 km. We note 
that the hyperbolic function is normalized by its value at the surface of the planet 
to ensure that the surface flow has the value of the measured cloud-level wind. 
Expansion of H(θ) to higher harmonics is possible, but additional optimized 
parameters increase the solution uncertainty (see below), and therefore we restrict 
this expansion only to second order.
The optimization procedure. The methodology described here is similar to 
that used in ref. 23. We find the values of a set of control variables that makes the 
model solution for the gravity harmonics as close as possible to the measured 
gravity harmonics. The number of optimized control variables in the three setups 
varies between one and four parameters, as discussed above. The measure for the 
desired proximity of the model solution to the measurements (a cost function)  
takes into account our knowledge regarding the observational errors. The opti-
mization procedure provides an efficient way to reach the global minimum of 
the cost function.

Since α has different units from those of H and ΔH, the problem is best con-
ditioned when the total control vector is composed from the different parameters 
normalized by their typical values. We define the general control vector as

α α= / Δ / / /X H h H h H h( , , , ) (15)C 0 nor nor nor 2 nor
T

where hnor = 107 m and αnor = 1. In the optimization procedure, the values of the 
normalized control variables H0/hnor, α/αnor and ΔH/hnor are limited to the range 
of 0 to 1, and the value of H2/hnor between −1 and 1.

The cost function is defined as the weighted difference between the model- 
calculated odd harmonics and those measured by Juno. Together with an additional 
penalty term to ensure that the initial guess does not affect the solution, the cost 
function is

ε= − − +J J J J X XL W( ) ( ) (16)m o T m o
C
T

C

where =J J J J J( , , , )m
3
m

5
m

7
m

9
m T is the calculated model solution, =J J J J J( , , , )o

3
o

5
o

7
o

9
o T 

is the measured one, and W is the 4 × 4 weight matrix (Extended Data Table 2), 
calculated as the inverse of the covariance matrix multiplied by 9 (equivalent to 
three times the uncertainties). The diagonal terms give the weight assigned to each 
harmonic independently, and the off-diagonal terms give the weights resulting for 
the cross-correlation of the measurement errors. The larger the value, the more 
weight is given in the cost function. For example, looking at the diagonal terms, 
the largest weight is given to J5 and the smallest one to J9. Importantly, the off-di-
agonal terms have values that are as large as the diagonal terms, that is, there is a 
strong correlation between the measurement errors, and therefore we can expect 
the discrepancy between the model harmonics and the measured ones also to be 
cross-correlated in the same manner. The second term in equation (16) acts as a 
penalty term (also known as ‘regularization’) whose purpose in this case is to ensure 
that the optimized solution is not affected by the initial guess, or any part of the 
control vector that does not affect the difference between the calculated and 
observed gravity harmonics. An extensive discussion of this issue (also known as 
the null space of the solution) can be found in previous studies17,23. The value of 
the parameter ε is set according to the initial value of the cost function, so it affects 
the solution only when the cost function is considerably reduced. The form of the 
penalty term is set to penalize any non-zero value of the control variable XC since 
there is no prior knowledge of the depth of the flow. Given an initial guess for XC, 
a minimal value of L is searched for using the Matlab function ‘fmincon’ and  
taking advantage of the cost-function gradient that is calculated with the adjoint 
of the dynamical model9.
Calculating the uncertainties in the solution. The control variable uncertainties 
are derived from the Hessian matrix G (second derivative of the cost function 
L with respect to the control vector XC)9. For example, in the third setup of the 
optimization there are 4 parameters that are optimized, therefore the size of the 
Hessian matrix will be 4 × 4. Inverting the Hessian matrix G, we get the solution 
error covariance matrix C. This matrix includes the error covariance associated 
with combination of each two control variables (off-diagonal terms), and the var-
iance of each one (diagonal terms). Physically, the covariance matrix indicates 
the formal uncertainties in the control variables given the uncertainties of the 
observations (weights W in the cost function). The larger the uncertainties in the 
observations, the smaller are the weights in the cost-function, and the larger the 
uncertainties in the control variables. The uncertainties appearing in this study 
for H, ΔH and α are the square roots of the diagonal terms in the matrix C. We 
note that in all cases analysed in this work, the off-diagonal terms in C have the 

same order of magnitude as the diagonal terms, meaning that uncertainties in the 
control variable are highly correlated.

Using the uncertainties in the control variable, we can calculate the uncertainties 
in the model solution for Jn. Since the uncertainties for H, ΔH, and α represent the 
first standard deviation of the errors, we can statistically estimate the associated 
error in the Jn values by solving the model with the parameters randomly perturbed 
around their optimized value (with the perturbations having a normal distribution 
with the calculated standard deviation). In this study we generate 1,000 such cases, 
calculate the Jn for each case, and then calculate the standard deviation for each 
Jn. This is the error value given to each gravity harmonic in Table 1 and Extended 
Data Table 1.
Statistical significance test for the latitudinal profile. One of the conclusions of 
this study is that the observed cloud-level meridional profile of the zonal wind, as 
observed at the cloud-level, extends deep into the interior. This is a strong con-
straint on the flow, and we investigate its statistical significance here. Since we are 
optimizing a solution with only four measurements, there exists a possibility that 
the match obtained with the gravity measurements is by chance and not because 
the same meridional profile extends to great depths. To exclude this possibility, 
we examine whether a match with the gravity measurements could be obtained 
when using a meridional profile different from that of the cloud-level flows. To 
make a sensible test, the artificial wind profile we examine should have similar 
characteristics, such as the typical latitudinal width of the jets and their amplitude. 
To accomplish this, the observed cloud-level wind is decomposed into the first 100 
Legendre polynomials

∑θ θ=
=

U A P( ) (sin ) (17)
i

i isurf
0

99

where Ai are the coefficients of the Legendre polynomials. To create the different 
artificial wind possibilities, the wind is then reconstructed as

∑θ θ=
=

U S A P( ) (sin ) (18)j

i
i
j

i irand
0

99

where Si
j are a 100 plus or minus signs randomly chosen for each realization j of 

the wind. The resulting artificial cloud-level wind retains the basic characteristics 
(width and strength) of the observed zonal jets, but their latitudinal locations are 
now very different. To statistically examine our ability to reach a solution that gives 
a good match between the model-calculated gravity harmonics and those meas-
ured, we generated 1,000 artificial cloud-level wind profiles. A few examples of 
such randomly generated winds are shown in Extended Data Fig. 3. We note that 
while the wind profiles are very different from one another, the main characteris-
tics of the observed winds are retained. Extended Data Fig. 4 shows the resulting 
J3, J5, J7 and J9 for these flow profiles (blue dots), optimized in the same way that 
the cloud-level wind solutions are. The results indicate that the gravity harmonics 
calculated using the specific cloud-level wind profile (black points with their uncer-
tainty ellipse), give results closer to the measurements (red points with their uncer-
tainty ellipse) than 99% of the random profiles, indicating the robustness of this 
result. We note the tendency of the optimized solutions to be in the quarter of the 
phase space where the measurements are (Extended Data Fig. 4), particularly for 
the case of J5 and J7, because for these harmonics the absolute value of the meas-
urement is largest and the relative measurement error is smallest (see Table 1), so 
their weight in the cost function is the largest. Taking the same random set of 
meridional profiles and calculating their gravity harmonics for a fixed vertical 
profile (without the optimization process) gives solutions spread equally over all 
quarters of the parameter space (Extended Data Fig. 5). This illustrates that the 
tendency of the simple exponential decay solution to have the correct sign and 
magnitude (Fig. 2) is also very likely not by chance. As an additional test we cal-
culate the solution taking the Jupiter observed cloud-level meridional profile, but 
extended into the interior radially instead of along the direction of the spin axis. 
In this case even the sign of the gravity harmonics differs from the measurements.
Non-uniqueness of the gravity inversion. It is important to note that the gravity 
inversion problem is non-unique, and as demonstrated in Figs. 3 and 4, different 
profiles can give similar gravity signatures. In addition, the cases presented here 
do not match the measurements perfectly, and with more free parameters and/or 
other meridional profiles45 one could achieve better matches to the measurements. 
However, since the problem is non-unique, achieving a perfect match is not nec-
essarily meaningful. Thus, the rationale of this study is to show that a minimal set 
of assumptions about the vertical and meridional structure gives by itself a very 
good, statistically significant, match to the measurements, indicating the structure 
and extent of the flow. Regardless of the exact vertical profile (which can depend on 
the parameterization and the non-uniqueness) the gravity measurements robustly 
reveal that the east–west jet streams on Jupiter are very deep, reaching several  
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thousands of kilometres beneath the cloud-level (several tens of kilobars of pres-
sure), and advect a large mass that is on the order of one per cent of the mass of 
the planet.
Code availability. The code for inversion of the gravity measurements is available 
at http://www.weizmann.ac.il/eserpages/kaspi/juno_code/.
Data availability. Figure data are available upon request.
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Extended Data Figure 1 | The vorticity balance. Solution to equation (6). a, Left-hand-side term with the wind profile from Fig. 3. b, Total of the  
right-hand side. c–h, The six terms on the right-hand side of equation (6), showing that the thermal wind balance (a and d) is the leading-order balance. 
Note that the different panels have different colour scales.
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Extended Data Figure 2 | Jupiter’s mass distribution. The percentage of Jupiter’s mass as a function of depth beneath the 1-bar level. The grey line 
shows that roughly 1% of the mass is contained above a depth of 3,000 km.
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Extended Data Figure 3 | Example of wind profiles used for the statistical significance test. The observed cloud-level wind (black), together with a 
sample of ten randomly generated wind profiles.
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Extended Data Figure 4 | Optimized solutions for the odd harmonics 
using random zonal wind profiles. a–f, Optimized solutions (blue) for J3, 
J5, J7 and J9 for flows with 1,000 different artificial meridional profiles of 
the zonal wind (as in Extended Data Fig. 3). The Juno measurements are 
shown in red with their corresponding uncertainty ellipse. The optimized 
solution corresponding to Jupiter’s observed  

cloud-level zonal wind profile (Fig. 3) is shown in black with the 
corresponding uncertainty ellipse. g, The cost function for all different 
meridional profiles explored, with the red line corresponding to the 
solution with the Jupiter zonal wind profile. Fewer than 1% of the solutions 
have lower cost functions (green).
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Extended Data Figure 5 | Solutions for the odd harmonics using 
random zonal wind profiles and a fixed vertical profile. a–f, Solutions 
(blue) for J3, J5, J7 and J9 for flows with 1,000 different artificial meridional 
profiles of the zonal wind (as in Extended Data Fig. 3), and the vertical 
profile held fixed with H = 2,000 km, ΔH = 1,500 km and α = 1. The Juno 
measurements are shown in red with their corresponding uncertainty 
ellipse. The solution with these parameters and using Jupiter’s observed 
cloud-level zonal wind profile is shown in black with the corresponding 

uncertainty ellipse. g, The cost function for all different meridional 
profiles explored, with the red line corresponding to the solution with 
the Jupiter zonal wind profile. This shows that when no optimization is 
done (which takes into consideration the relative measurement error of 
the different harmonics), the solutions are spread equally over all four 
quadrants in these phase spaces (unlike in Extended Data Fig. 4). Only one 
solution has a lower cost function (green).
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extended data Table 1 | Flow-induced even gravity harmonics

×10−8 Model without
latitudinal variation

Model with
latitudinal variation

∆J2 54.62±5.21 −48.87±7.93
∆J4 −5.18±0.74 −15.01±7.56
∆J6 0.33±0.35 0.29±1.49
∆J8 5.41±0.28 4.76±0.61
∆J10 -5.35±0.25 -4.94±0.71

The even gravity harmonics solutions for the optimization, with and without variation of flow 
depth with latitude, that correspond to the solutions presented in Figs 3 and 4 and Table 1. 
The uncertainties are the 3σ uncertainty values.
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extended data Table 2 | The weights matrix W used in the cost 
function L of equation (16)

Shown are the weights associated with J3, J5, J7 and J9 (diagonal terms) and those associated with 
the correlation between the harmonics (off-diagonal terms). The values reflect the uncertainties 
in the measurements, calculated taking the inverse of the measurement error covariance matrix 
multiplied by 9 (to reflect 3σ uncertainties). The larger the value, the larger the weight given to it 
when minimizing the cost function. Values shown are multiplied by 10−16.
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