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2 The Niels Bohr Institute for Astronomy, Physics and Geophysics, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark

Received 6 April 1999 / Accepted 3 November 1999

Abstract. Several numerical simulations of buoyant 2D and
3D twisted flux ropes have been performed. It is found that the
apex region of an anchored 3D flux rope behaves similarly to
the simpler case of a 2D horizontal twisted flux tube while the
overall structure of such a 3D flux rope developes quite differ-
ently. Upon emergence a characteristic S-shape of the magnetic
field lines is displayed in agreement with observations in soft
X-ray.
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1. Introduction

Numerical experiments carried out within the thin flux tube ap-
proximation (e.g. Spruit 1981 and Moreno-Insertis 1986) are
consistent with the observations of the latitudes of emergence
and tilt angles of bipolar magnetic regions on the surface of the
Sun (Fan et al. 1994 and Caligari et al. 1995). However, more
general numerical simulations, not relying on the assumption
that the flux tubes are thin, have shown that cylindrical flux
tubes are quickly disrupted by a magnetic Rayleigh-Taylor in-
stability, whereby characteristic “mushroom” structures are cre-
ated, and the flux tubes loose their buoyancy (Schüssler 1979,
Tsinganos 1980, Cattaneo & Hughes 1988, Cattaneo et al. 1990,
Matthews et al. 1995, Moreno-Insertis & Emonet 1996, Emonet
& Moreno-Insertis 1996, 1998 and Dorch & Nordlund 1998).
This is a result of the simple topology assumed for the magnetic
field of the flux tubes: A parallel field has no inhibiting effect
on the Rayleigh-Taylor instability.

Magnetic field lines may become twisted as a result of the
complex mapping of turbulent convective velocity flows, or as
a result of rotational shear acting on flux ropes located at the
bottom of the convection zone, that connect across the equator.
The magnetic field line tension resulting from a twist may sup-
press the Rayleigh-Taylor instability and hence prevent the flux
ropes from disintegrating. This has been demonstrated in nu-
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merical 2D simulations (e.g. Emonet & Moreno-Insertis 1996
and 1998). In 3D the presence of a twist means that there is a
possibility for the rope to kink. As a twisted buoyant flux rope
ascends up through the convection zone, its magnetic field in-
tensity will weaken by several orders of magnitude, because of
the expansion of the rope. However, the longitudinal and trans-
verse field components do not decrease in proportion (e.g. Priest
1990 and Kuznetsov & Hood 1997). As first shown by Parker
(1974) the transverse component of the magnetic field has a ten-
dency to become concentrated in the expanded portion of a rope.
Since the kink instability and other 3D effects such as curvature
leading to the Parker-instability, cannot be represented in 2D,
numerical 3D simulations are called for.

2. Model

The resistive and compressible MHD-equations, written in con-
servative form and neglecting rotation (see Dorch & Nordlund
1998), are solved in a Cartesian box using the computational
scheme by Galsgaard and others (e.g. Galsgaard & Nordlund
1997 and Nordlund et al. 1994): A finite difference staggered
mesh with 6th order derivative operators, 5th order centering
operators and a 3rd order Hyman time-stepping routine. In this
scheme the viscous and magnetic diffusive terms are quenched
in regions with smooth variations, to reduce the diffusion of
well-resolved structures. Typical magnetic Reynolds numbers
in non-smooth regions are of the order of a few times102, while
in smooth regions it can be substantially higher.

We present results from simulations of flux ropes with an
initial entropy balance∆S = 0 between the interior of the
rope and the external medium. This corresponds to buoyancy
a factor ofγ lower than in the case of temperature balance.
Through-out the simulations the buoyancy deviates only slightly
from 1/(γβ) (on the average∼ 3%) indicating that∆S does
not change significantly due to artificial diffusion. This type
of initial condition was also recently used by Moreno-Insertis
& Emonet (1996) and Emonet & Moreno-Insertis (1998) and
has the advantage that the relatively high buoyancy results in a
significantly shorter run-time than e.g. evolving the flux ropes
from an initial perturbed state of mechanical equilibrium. The
initial twist of the flux ropes are given by
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Fig. 1. A snapshot from the 3D simulation of a twisted horizontal flux
rope: The rope is seen from “above” att = 44 sound crossing times.
Note: Only the central half of the computational box is shown.

Bz = B0e
−(r/R)2 , Bφ ∝ Bz(r/R)3e−(r/R)2 , (1)

whereBz is the parallel andBφ the transversal component of
the magnetic field with respect to the rope’s main axis.B0 is the
amplitude of the field andR the radius. This expression for the
twist has been applied in 2D simulations and it has been shown
that for these cases the Rayleigh-Taylor instability is inhibited
if the degree of twist is sufficiently high (Moreno-Insertis &
Emonet 1996 and Emonet & Moreno-Insertis 1996, 1998). This
kind of topology is simple but similar to the relaxed state of a
flux rope with a more complicated topology (Dorch & Nordlund
1998).

The vertical essentially 1D stratification in the computa-
tional box is two-fold consisting of a lower, sub-adiabatically
stratified layer and an upper, adiabatically stratified “convection
zone”. The purpose of the sub-adiabatic layer is to model the
average sub-adiabatic undershoot layer. Both layers are initially
in hydrostatic equilibrium and convection is absent during the
simulations.

3. Results

We have performed several simulations of buoyant flux ropes
in both 2D and 3D, but below we discuss first a 2D and a 3D
simulation of a horizontal (straight) twisted flux rope, and then
a 3D simulation of an undular twisted flux rope with its feet
anchored in the sub-adiabatic layer.

A 2D calculation in a box with150× 100 grid points, and a
3D calculation with150×100×200 grid points were performed.
The height of the box wash = 1

2HP and the widthL ≈ 1
3HP.

In the 3D case, the length of the box and the flux rope was
L ≈ 2

3HP, withHP being the pressure scale height at the bottom
of the box. The rope was not unstable to the Parker-instability
(Spruit & van Ballegooijen 1982) since this would require it to
be at least an order of magnitude longer.

A radius ofR = 3.7 × 10−2 HP and a plasma beta ofβ =
103 was chosen to ensure a sufficiently short time of rise. The
maximum field line pitch occurs at a radial distance of

√
3/2R

from the rope’s axis. Emonet & Moreno-Insertis (1996) showed

Fig. 2.A snapshot showing the ascending 3D twisted undular flux rope.
The feet of the rope are anchored in the stable lower layer. Isosurfaces of
magnetic field strength are shown at low field strength (transparent) and
at high field strength (opaque). Also shown is a single weak magnetic
field line.

that to prevent the Rayleigh-Taylor instability a maximum pitch
angle of10o is needed for this particular twist topology. We set
the maximum pitch angle equal to20o and thus the field lines
with the maximum pitch encircle the flux rope main axis only
once.

The general result of the 2D simulation was that the
Rayleigh-Taylor instability was inhibited and the rope per-
formed oscillations about its center as it rose (see also Emonet
& Moreno-Insertis 1998). The maximum pitch angle of the rope
increased as the central part of the rope squeezed the rope apex.

The results for the case of a horizontal 3D rope are consistent
with the 2D results. As the rope rose the pitch increased until it
saturated, as the flux rope entered a quasi-steady regime, where
the topology hardly changed during the rise. At that point the
field lines just below the stagnation point in front of the rope
were virtually perpendicular to the main axis of the rope (see
Fig. 1) while the field lines just below the rope were effectively
parallel to it.

A 3D simulation of a twisted undular flux rope was per-
formed with150 × 80 × 200 grid points. The pressure contrast
of the adiabatic “convection zone” was 5.1, the height of the box
h = 1.5 HP, and the stably stratified lower layer (withδ = −1)
had a thickness of 0.3HP.

The wavelength of the sinusoidal flux rope was set toλ =
4.2HP so that the flux rope was not Parker-unstable even though
the stratification admits this instability for ropes longer than
the critical wavelength of12 HP (Spruit & van Ballegooijen
1982). The amplitude of the undulation of the rope was set to
∆l = 3.5×10−2λ and the radius toR = 5×10−2 HP. Initially
the rope was twisted, with a maximum pitch angle of30o, well
above the Rayleigh-Taylor stability criterion.

Fig. 2 shows a snapshot from a well developed stage: While
the part of the rope that is in the adiabatic zone starts to ascend,
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Fig. 3. Field strength at the apex of the rope (symbols) as a function
of the apex height above the stable layer. Also shown is the predicted
decrease of the magnetic field strength in an adiabatically rising flux
rope with a polytropic internal stratification.

the feet remain anchored in the stable layer through-out the
simulation, because of the strong sub-adiabatic stratification.

The structure of the magnetic field near the apex of the flux
rope is similar to what was obtained for horizontal flux ropes.
The weak magnetic field line shown has a very high pitch angle
in front of the rope but is almost parallel behind it. The effect of
this weak field is the same as in the case of straight but twisted
3D or 2D flux ropes, i.e. it helps to suppress the Rayleigh-Taylor
instability, that otherwise threatens to break up the ropes.

After the initial acceleration due to buoyancy, the rope’s apex
enters a quasi-stationary regime, where its speed approaches a
terminal value of 1.5% of the sound speed in an oscillatory man-
ner. In 2D this behavior is a result of the competition between
buoyancy and aerodynamic drag (Emonet & Moreno-Insertis
1998), but in 3D the magnetic force associated with the main
curvature of the rope, is the primary competitor to buoyancy.

Fig. 3 shows the magnetic field strength at the rope’s apex
as a function of time. The field decreases almost monotonically
although some oscillations are seen. Dorch & Nordlund (1998)
showed that the evolution of a 2D flux rope with a complex
field topology closely followed the evolution of an adiabatically
ascending flux rope with an internally polytropic stratification.
The behavior of the apex field fits well with this simple estimate,
showing that the weakening of the field strength is mainly due
to the decreasing external pressure.

According to Galsgaard & Nordlund (1997) the kink insta-
bility in general sets in, when the twist of a magnetic structure is
of the order of4π – 8π, depending on various parameters such
as diameter and field strength. Another criterion for a twisted
flux tube to kink, is thatqR > 1, whereq = Bφ/(RBz) is
the helical pitch (Linton et al. 1996). Since the initial maximum
pitch angle was set to30o the field lines with the maximum pitch
correspond to a twist of the order of15π along the rope. Initially
the value of the maximum pitch of the flux rope was below the
criterion by Linton et al. (1996) but above that of Galsgaard
& Nordlund (1997). However, in the interior of the flux rope,

Fig. 4. A snapshot of the vertical component of the magnetic field in
a horizontal cross-section of the box as the rope emerges through the
open boundary (only half of the box in the direction parallel to the rope
is shown).

the pitch angle as given by the expressions Eq. 1 and 2 was
significantly smaller than the maximum of30o. This explains
that as a whole, the flux rope has twisted isosurfaces and looks
similar to a twisted rubber band (Fig. 2), but does not develope
a full-blown kink. For a recent study of kink-unstable flux ropes
see e.g. Fan et al. (1998).

Initially the feet, legs, and apex of the rope had the same
cross-section, and the rope was symmetric around the apex.
These three parts of the rope develop, however, rather differ-
ently. The feet perform buoyancy oscillations for a short time
only before they are firmly anchored in the lower layer and
quite flat. The legs become very elongated in the vertical direc-
tion and as they rise they leave behind a considerable amount
of their magnetic field in a wake. The behavior and shape of the
apex of the rope is similar to that obtained in 2D simulations of
twisted buoyant flux tubes; a weak transversal field protects the
strongly buoyant more or less parallel core component of the
field against the external medium.

As the apex of the flux rope approaches the upper boundary
of the box, the open boundary condition begins to influence the
evolution of the rope. Fig. 4 shows a horizontal cross section of
the magnetic field as the rope emerges through the boundary. A
“bipolar region” is formed by the emerging legs and the “spots”
separate as the rope rises through the surface. At some stages of
the emergence the magnetic field has a characteristic S-shape
similar to what is observed in soft X-rays images of magnetic
surface structures (see Canfield et al. 1999).

In a recent study Matsumoto et al. (1998) showed that a
buoyant flux rope that initially is given a Gold-Hoyle twist (in-
dependent of radius) is significantly kink unstable and for the
emergence of a twisted flux rope they obtain results similar to
the above. It is worth noticing, however, that the difference in
initial field line topology may result in large differences in the
subsequent overall behavior of the flux ropes: The Gold-Hoyle
twist is more likely to give a kink than the case discussed here,
because the main twist in the present case is confined to a thin
layer around the rope as found in the case of Dorch & Nordlund
(1998).

4. Summary and conclusions

The present study confirms that some degree of twist of the mag-
netic field lines is needed to prevent a break-up of flux structures
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in a magnetic Rayleigh-Taylor instability because of differen-
tial buoyancy and the interaction with the external stratification.
The 2D work of Dorch & Nordlund (1998) has been extended
to cases of 3D twisted horizontal flux ropes, as well as to 3D
twisted undular flux ropes. The studies of 3D twisted horizontal
flux ropes are in complete agreement with the corresponding
2D studies (as they should be) but the 3D simulations of twisted
undular flux ropes deviates in important respects from the 2D
simulations.

Magnetic tension is present in topologically complex fields
such as fields generated by turbulent motions producing a
chaotic mapping of field lines. It is likely that the dynamo gen-
erated field stored in the undershoot layer has such a complex
topology. The origin of a net-twist such as the one assumed
above is non-trivial. It might be a consequence of the radial
shear in the undershoot layer, acting on flux structures con-
nected across the equator, but this has not yet been proven.

A lot of dynamically important effects have not been in-
cluded in the present discussion, e.g. in the case of the 3D flux
rope the apex rises only about one pressure scale height, and
therefore the radius of the rope is still not large compared to the
external adiabatic stratification. The expansion of flux ropes as
they rise to lower pressures than has been modeled here will
probably have strong effects on the stability of the ropes.

The main results from numerical 2D simulations of buoy-
ant horizontal flux tubes hold to a good approximation for the
apex of 3D flux ropes: The suppression of the Rayleigh-Taylor
instability by transversal field lines due to a twist of the rope,
oscillations of the apex as it rises, the shape of a cross section of
the rope apex, the generation of vortex rolls, and the decrease of
the magnetic field at the apex are all phenomena that are similar
to what is found in the 2D case. The main differences are that
in the 3D case in addition to drag, magnetic tension towards
the radius of curvature of the undular rope is present and may
further reduce the ascent velocity, and that the behavior of the
legs and feet of the rope cannot be correctly modeled in 2D.
The shape and behavior of the emerging “bipolar region” that is
formed when the rope emerges through the surface is in general
agreement with the observations in e.g. soft X-ray of S-shaped
active regions (by e.g. the Yohkoh satellite).

In the real solar convection zone buoyant flux structures are
constantly interacting with the surrounding turbulent convec-

tion, convective downdrafts and updrafts, and neighboring flux
structures. The question remains whether the quasi-steady state
topology that the flux ropes reach in the later phase of their
rise is stable towards perturbations from the surroundings, and
whether the results reported here, for 3D flux ropes moving in
a 1D static stratification, at all carry over to the more realistic
case. Simulations of 3D flux ropes ascending in a dynamic 3D
convection zone are under way.
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