
A&A 380, 734–738 (2001)
DOI: 10.1051/0004-6361:20011397
c© ESO 2001

Astronomy
&

Astrophysics

Flux-loss of buoyant ropes interacting with convective flows
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Abstract. We present 3-d numerical magneto-hydrodynamic simulations of a buoyant, twisted magnetic flux rope
embedded in a stratified, solar-like model convection zone. The flux rope is given an initial twist such that it
neither kinks nor fragments during its ascent. Moreover, its magnetic energy content with respect to convection
is chosen so that the flux rope retains its basic geometry while being deflected from a purely vertical ascent by
convective flows. The simulations show that magnetic flux is advected away from the core of the flux rope as it
interacts with the convection. The results thus support the idea that the amount of toroidal flux stored at or near
the bottom of the solar convection zone may currently be underestimated.
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1. Introduction

The concept of buoyant magnetic flux tubes is an essen-
tial part of the framework of current theories of dynamo
action in stars, particularly in the case of cool dwarf stars
such as the Sun. Results from studies of buoyant mag-
netic flux tubes carried out within the essentially 1-d thin
flux tube approximation (e.g. Spruit 1981; Moreno-Insertis
1986) are consistent with the observed latitudes of emer-
gence and tilt angles of bipolar regions on the surface
of the Sun (Fan et al. 1994; Caligari et al. 1995). More
general 2-d simulations of flux tube cross-sections have
shown that cylindrical tubes are disrupted by a magnetic
Rayleigh-Taylor instability (e.g. Schüssler 1979; Tsinganos
1980; Cattaneo et al. 1990; Matthews et al. 1995; Moreno-
Insertis & Emonet 1996). This renders them unlikely to
reach the surface unless the presence of fieldline twist in-
troduces a sufficient amount of magnetic tension to sup-
press this effect (Emonet & Moreno-Insertis 1996, 1998;
Dorch & Nordlund 1998). On the one hand, 3-d sim-
ulations of buoyant, twisted flux ropes have confirmed
several of the results from 2-d simulations (Matsumoto
et al. 1998; Dorch et al. 1999), and have further shown
that the S-shaped structure of a twisted flux tube as it
emerges through the upper computational boundary is
qualitatively similar to the sigmoidal structures observed
in EUV and soft X-ray by the Yohkoh and SoHO satellites
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(e.g. Canfield et al. 1999; Sterling et al. 2000). Moreover,
tightly packed δ-spots may be interpreted as the emer-
gence of highly twisted, kinking flux ropes (e.g. Fan et al.
1999). On the other hand, it has been suggested that the
value of the critical degree of twist needed to prevent the
Rayleigh-Taylor instability may be unrealistically high in
the 2-d case, and a smaller twist may be sufficient in the
case of sinusoidal 3-d magnetic flux loops (Abbett et al.
2000).

In the solar convection zone, buoyant flux structures
are constantly interacting with the surrounding convec-
tive downdrafts and updrafts, and the question remains
whether the quasi-steady behavior that the flux ropes
reach in the later phase of their rise in 2-d simulations
(Emonet & Moreno-Insertis 1998; Dorch & Nordlund
1998) is stable towards perturbations from the surround-
ings, and whether the results found for 3-d flux ropes mov-
ing in a essentially 1-d static stratification are valid in the
more realistic case.

In this paper, we present our first results regarding
the behavior of buoyant, twisted flux ropes embedded in
a fully dynamic model of solar-like convection.

2. Numerical model

The set-up of the model is twofold, consisting of a snap-
shot of a time-dependent, but statistically relaxed “local
box” convection zone model (sandwiched between two sta-
ble layers), and of an idealized twisted magnetic flux rope.
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Fig. 1. The vertical velocity in slices of the model convection
zone in the initial state at two different depths: at the surface
(left) and at the depth of the flux rope (right).

We solved the full resistive and compressible MHD-
equations on a staggered mesh of 150 vertical × 1052 hor-
izontal grid points, using the method by Galsgaard and
others (e.g. Galsgaard & Nordlund 1997; Nordlund et al.
1992):

∂ρ

∂t
= −∇ · ρu, (1)

∂ρu

∂t
= −∇ · (ρuu− τ)−∇P + F grav + F Lorentz, (2)

∂B

∂t
= ∇× (u×B) +∇× (η∇×B), (3)

∂e

∂t
= −∇ · (eu) + P (∇ · u) +Qrad +Qvisc +QJoule. (4)

Here ρ, u, P , B, and e represent the density, velocity,
pressure, magnetic field, and internal energy respectively.
η and τ denote the magnetic diffusivity and the viscous
stress tensor; the source terms Qvisc, QJoule, and Qrad refer
to the viscous, Joule, and diffusive heating. In the upper
part of the domain, Qrad includes an additional term that
provides for a simple, isothermal cooling layer.

The computational method employs a finite differ-
ence staggered mesh with 6th order derivative operators,
5th order centering operators, and a 3rd order time-
stepping routine. The diffusive terms are quenched in re-
gions with smooth variations, to reduce the diffusion of
well-resolved structures. Magnetic Reynolds numbers in
non-smooth regions are of the order a few times 102, but
can be much higher in smooth regions.

The computational box is horizontally periodic with
sides of 250 Mm and a height of 313 Mm (of which 166 Mm
is the convection zone, that covers 2.5 orders of magnitude
in pressure). The flows are turbulent through-out the con-
vection zone, and the kinetic energy spectrum displays a
power law at intermediate wavenumbers (k ≈ 3−10). As it
is typical for over-turning stratified convection, a cellular
granulation pattern is generated on the surface of the con-
vection zone (Fig. 1). The typical length scale of this pat-
tern is about 50 Mm, somewhat larger than the canonical
size of 32 Mm of solar super-granules (e.g. Leighton et al.
1962). The typical velocity of the granulation is 200 m s−1

in the narrow downdrafts at the surface and slightly less

in the upwelling regions, close to what is found for solar
super-granulation (e.g. Worden & Simon 1976).

We choose an initially isentropic flux rope with a buoy-
ancy of 1/γ (with γ = 5/3) lower than the case of tempera-
ture balance, where the buoyancy is 1/β (with β being the
classical plasma beta). This is computationally advanta-
geous, since we avoid the costly process of perturbing the
flux rope from a state of mechanical equilibrium.

The initial twist of the flux rope is given by

Bz = B0e−(r/R)2
and Bφ = α(r/R)Bz , (5)

where Bz is the parallel and Bφ the transverse component
of the magnetic field with respect to the rope’s horizontal
main axis. The coordinate system is chosen so that z cor-
responds to the initial axial direction of the rope.

The wavelength λ of the flux rope is equal to the
horizontal size of the domain so that λ = 3.2 HP0 at
the initial position of the rope. Thus, the flux rope is
not undular Parker-unstable even though the stratification
permits this instability for longer wavelengths (Spruit &
van Ballegooijen 1982). The rope is initially twisted, with
a pitch angle (at r = R) of ψR = arctan(α) and a ra-
dius R0 = 0.177 HP0 which corresponds to a half-width
at half-maximum of Bz (henceforth HWHM) of ∼0.1 HP0.

To avoid problems associated with the large ratio of
thermal to dynamic time scales, our convection model has
a much higher luminosity than the Sun, and thus, all vari-
ables must be scaled to compare with solar values. The
choice of the magnetic field strength is somewhat prob-
lematic in this regard. The ratio of kinetic to thermal en-
ergy density eK/e is much larger in our model than in the
Sun (though the convective flows remain subsonic with
an average Mach number of 0.01). This requires a choice
of β that is smaller than its presumed value at the base of
the solar convection zone so that the ratio of magnetic to
kinetic energy density eM/eK is the proper order of mag-
nitude. However, a small β is what is needed so that the
time it takes to complete a simulation is not prohibitively
long. We choose β = 100, which yields a solar-like eM/eK

of 100.

3. Results

We have performed several fully convective 3-d simula-
tions, as well as a number of 2-d convection-less simula-
tions. The results of the latter agree with previous 2-d find-
ings, and are used for reference in the following. We discuss
results from a 3-d simulation with ψR = 45◦ (α = 1). In
that case, the degree of twist is small enough to prevent
the onset of the kink instability (the linear growth rate
vanishes for α = 1, e.g. Fan et al. 1999), yet it is large
enough to prevent the onset of the Rayleigh-Taylor insta-
bility. Thus, the rope retains its cohesion without distort-
ing its shape by any of these two instabilities, and we can
focus our attention on the effects of the convective flows
on the rope.

Figure 2 compares our 3-d simulation to a correspond-
ing 2-d convection-less reference simulation, and a simple
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Fig. 2. a) Height of the flux rope as a function of time (stars). Also plotted are the corresponding results from a 2-d reference
simulation (diamonds). The straight line corresponds to the average speed (0.1 vA0) in the rise phase. b) Drift of the flux rope
in the meridional plane. c) Expansion of the flux rope (stars) with the corresponding result from the 2-d reference simulation
over plotted (diamonds). Also plotted is an analytical expression (solid line, see text). d) Magnetic field strength as a function
of height.

analytic flux tube. As the 3-d rope rises, convective flows
perturb its motion, preventing it from entering a well-
defined terminal rise phase with a constant rise speed, as
in the 2-d reference simulation (see Fig. 2a). The rope re-
mains straight and the maximum excursion of its axis, at
the end of the simulation, is ∼0.04 λ, where we define the
rope’s axis as the set of positions along the rope, where
the magnetic field strength is maximum. With the chosen
super-equipartition axial field strength, the main action of
the large-scale convective flows is to push the rope both
left and right of the central plane (Fig. 2b; see also the
mpeg-movie at Dorch 2001), while the effect of the small-
scale downdrafts (of the order of the rope’s radius) is to
locally deform its equipartition boundary.

Initially the rope is located in a general updraft region.
This explains why the rise speed of the rope is slightly
greater than that of the 2-d reference simulation, which
reaches a terminal speed of∼0.1 vA0 (vA0 being the Alfvén
speed at the initial position of the rope). Nevertheless, the
two ropes arrive at the same final height at the end of
the runs (though in the 3-d case, we note that the rope
follows a longer path). Our 3-d rope also expands more
quickly than the rope in the 2-d simulation, and its rate
of expansion is closer to what is expected from an adiabat-
ically expanding, non-stretching tube with constant flux
(B/ρ = const.):

R(x) = R0

(
1−∇a

x− x0

HP0

)−1/2∇a
. (6)

Figure 2c shows the rope’s characteristic size Rhwhm de-
fined by the average between the vertical and horizontal
HWHM along its axis (the short period oscillations due to
differential buoyancy, that are not well-resolved, have been
filtered out by smoothing over two grid points). As the
rope rises and expands, its magnetic field strengthBc, here
defined as the average axial field strength along the rope,
decreases at a rate close to that determined by Eq. (6).
At later times, the field strength of the 3-d and 2-d ropes
decrease at nearly the same rate (Fig. 2d). The deviation

Fig. 3. Left: magnetic flux within the rope Φi (stars), the cor-
responding quantity in the 2-d simulation (diamonds) and an
analytic fit (solid curve), right: the normalized flux outside and
above the center of the 3-d rope Φu (stars), and below, Φl (tri-
angles). The same quantities are shown for the 2-d reference
simulation (solid and dashed curves respectively).

can be attributed to the fact that, during its ascent, a
significant amount of the magnetic flux within the 3-d
rope is lost to its surroundings. This is illustrated by
Fig. 3 (left), which shows the total normalized magnetic
flux within the HWHM-boundary Φi as a function of time
for both the 2-d and 3-d ropes. We note that as the 3-d
simulation progresses, the total flux-loss from the compu-
tational domain is only 0.3%. The flux content of the rope,
however, decreases much more quickly.

Also shown in Fig. 3 (right) is the magnetic flux ex-
ternal Φe to the rope both above and below its center Φu

and Φl respectively. Since the sum Φe + Φi is nearly con-
served, as Φi decreases, Φe = Φu + Φl must increase by an
equal amount. However, the distribution of the flux-loss is
not symmetric: more flux is lost to the surroundings below
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the rope than above. The e-folding time of the increase of
flux Φl in the lower domain is ∼20 τA (with τA = R0/vA0).

This asymmetry also exists in the 2-d reference simula-
tion, even though the total flux-loss is much smaller in that
case. The asymmetry is a result of two factors. First, as
the rope rises, the total volume above it decreases, while
the volume below it increases. Second, there is an anti-
symmetry of the relative velocity across the rope. When
the rope ascends, there is a tendency for flux to be ad-
vected towards the rope near its apex, and transported
away from the rope in its wake. The more pronounced
asymmetry in the 3-d case can be attributed to the pump-
ing effect that transports the weak field downwards (Dorch
& Nordlund 2001; Tobias et al. 2001).

We have defined the flux rope as the magnetic struc-
ture that lies within the HWHM-boundary. This boundary
is not, however, a contour that moves with the fluid in the
classical sense: the flux within the latter kind of contour is
naturally conserved (neglecting resistive effects) and equal
to the total flux Φ0 = Φe +Φi. The HWHM-boundary is a
convenient way of defining the flux rope and a characteris-
tic size Rhwhm, that behaves more or less as it is expected
from the analytical expression Eq. (6). The evolution of
the flux within the rope’s core Φi is determined by

Φ̇i = −
∮

boundary

∆v ×B · dl, (7)

where ∆v is the difference between the fluid velocity and
the motion of the HWHM-boundary. The average “slip”
∆v of the rope’s boundary in the simulation is only a small
fraction of the rise speed, and varies between the range of
plus or minus a few times 10−4 and 10−3 vA0.

Making the rather crude assumptions that the bound-
ary only moves radially relative to the fluid and that the
circumference of the boundary is circular (which it is not),
Eq. (7) reduces to

Φ̇i = −πRhwhm ∆v Bc, (8)

where Bc is the field strength at the center of the flux
rope. Integrating Eq. (8) numerically with Rhwhm and Bc

determined from the simulation (see Fig. 2), the result
is a perhaps surprisingly good fit to the actual flux-loss,
see Fig. 3 (left), if ∆v is set to 3 × 10−4 vA0 throughout
the time span of the simulation except for a short interval
of ∼3 τA around t = 30 τA, where ∆v = −10−3 vA0,
when the rope passes from one updraft to another (see
the discussion below).

4. Discussion and conclusions

The 3-d numerical simulations show that the interaction
of a buoyant twisted flux rope with stratified convection
leads to a considerable loss of magnetic flux from the
core of the flux rope (as defined by the rope’s HWHM-
boundary).

The initial position of a flux rope in the convection
zone is significant for the subsequent detailed history of

its rise: with the present convective flows and the initial
location of the flux rope, most of the rope starts out lo-
cated inside or close to a convective updraft. Thus, the
ascent of the rope is likely to be influenced by this fact,
and we are therefore not able to draw any conclusions on
the detailed path of its rise. However, in the course of the
simulation, the flux rope rises 96 Mm, and loses about 25%
of its original flux content. This, ceteris paribus, leads to
an increase in the amount of toroidal flux that must be
stored at the bottom of the convection zone during the
course of the solar cycle.

In the Sun, toroidal flux ropes rise about 200 Mm
through the convection zone before emerging as bipolar
active regions. One may thus expect them to lose even
more of their initial flux, which would then be pumped
back down toward the bottom of the convection zone. We
can quantify this subsequent flux-loss by assuming that
Eq. (8) is valid through-out the rise, that the ropes expand
according to the simple analytical estimate of Eq. (6), and
that the ratio of the slip ∆v to the rise speed remains con-
stant. Given these assumptions, the flux-loss at a height of
200 Mm is 26% of the initial flux, i.e. not much more than
in our simulation. However, the relative slip may not re-
main constant throughout the rope’s rise. For example, ∆v
and thus Φ̇i changes at the time around t = 30 τA, which
corresponds to the time when the rope is at its maximum
(rightward) excursion from a vertical ascent (see Fig. 2b).
At that time, the rope exits the convective updraft with
which it was initially associated, and enters a different
ascending “plume” to the left of the its original position.
This leads to a transient compression of the rope (∆v < 0,
in the simplified expression Eq. (8)). After entering the
new plume, the average slip returns to its previous posi-
tive value for the remainder of the rise.

Petrovay & Moreno-Insertis (1997) suggested that tur-
bulent erosion of magnetic flux tubes may take place
within the solar convection zone due to the “gnawing” of
turbulent convection. They propose a mechanism whereby
a flux tube is eroded by a thin current sheet that forms
spontaneously within a diffusion time. That we do not see
a loss of flux via this type of enhanced diffusion should
not, however, be taken as a dis-proof of the feasibility
of turbulent erosion: it requires the turbulence to be re-
solved down to much smaller scales ` � λ, than in our
simulations. Instead, the flux-loss is completely due to the
advection of flux away from the core of the flux rope by
convective motions. Most of the flux that is “gnawed-off”
ends up in the trailing wake and some of this flux is mixed
back into the upper layers by ascending flows. We specu-
late that both types of flux-loss may take place simultane-
ously in the Sun, and as a result, the amount of toroidal
flux stored near the bottom of the solar convection zone
may currently be underestimated.
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