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Abstract. The interaction of magnetic fields and stratified convection was studied in the context of the solar
and late type stellar dynamos by using numerical 3D MHD simulations. The topology of stratified asymmetric
and over-turning convection enables a pumping mechanism that may render the magnetic flux storage problem
obsolete. The inclusion of open boundary conditions leads to a considerable flux loss unless the open boundary is
placed close to the physical boundary. Simulations including solar-like latitudinal shear indicates that a toroidal
field of several tens of kilo-Gauss may be held down by the pumping mechanism.
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1. Introduction

Magnetic fields play an important rôle for the formation of
the spectra of active late type G, K and M dwarf stars (e.g.
Schrijver & Rutten 1987; Rutten et al. 1989; Johns-Krull
& Valenti 1996). The most studied star in that respect is
the Sun. It is generally assumed that solar active regions
are manifestations of a strong toroidal flux system, that
is generated and anchored deep below the surface of the
Sun, possibly in the undershoot layer below the convection
zone proper. Toroidal magnetic strands ascend through
the convection zone because of buoyancy and the on the
average super-adiabatic stratification. The much weaker
poloidal field is assumed to be generated in the convection
zone from this toroidal field by a cyclonic effect.

In the mean field dynamo context, the mechanism that
takes care of communicating the poloidal field back to the
region where the toroidal field is generated, is assumed
to be a diffusive coupling of the regions where the ω-
effect and the cyclonic α-effect operate (e.g. Parker 1993).
Choudhuri & Dikpati (1995) have shown that meridional
circulation may also couple the two regions, if the time
scale of the circulation is shorter than the diffusive time
scale, and if the circulation is such that the flow is equator-
ward at the bottom of the convection zone. The modeling
by diffusive coupling of the regions may be considered to
be somewhat unsatisfactory because it relies on a rather
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ad hoc approach and the meridional circulation approach
is equally unsafe since it is not well observed — at best
the amplitudes and directions of the flow are indicated
(van Ballegooijen 1998).

The question of how the poloidal field may return to
the region where the generation of the toroidal field sup-
posedly takes place is related to the well-known “buoyancy
dilemma” and the generally assumed solution to this prob-
lem: any magnetic field in the convection zone will escape
because of its buoyancy but a magnetic field may be stored
in the stably stratified region below the convection zone;
i.e., in the undershoot layer. In that scenario the convec-
tion zone is considered to be a passive one-dimensional
medium while the magnetic fields are treated more or less
as solid objects that move in it. It is conceivable, however,
that some kind of balance may occur between the drag of
descending plasma and the buoyancy of the magnetic field
embedded in the plasma.

Along this line of thinking Drobyshevski & Yuferev
(1974) proposed that a downward “topological pumping”
of the magnetic field could be occurring, because of the
asymmetric nature of the topology of 3D convective flows,
i.e. that they consist of networks of descending mate-
rial embedding regions of ascending material. They in-
vestigated the kinematic case at low magnetic Reynolds
number by assuming an incompressible simple geomet-
rical velocity flow pattern. Criticism by Parker (1975)
made Drobyshevski et al. (1980) redo the experiments
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with a more suitable upper boundary condition. Arter
et al. (1982), Arter (1983) and Galloway & Proctor (1983)
extended the work to higher magnetic Reynolds numbers
and several different compressible flows. They found that
the magnetic energy did indeed increase at the bottom of
the domain.

During the last decade several groups have performed
more detailed magneto-convective numerical simulations
(e.g. Hurlburt & Toomre 1988; Brandenburg et al. 1990;
Jennings et al. 1992; Nordlund et al. 1992; Hurlburt et al.
1994; Nordlund et al. 1994; Brandenburg et al. 1996).
Moreover, numerical simulations of stratified convection
have shown that trace particles initially placed in a hor-
izontal layer of a highly stratified model on the average
are transported downwards, as a result of the asymmet-
ric topology of stratified convection (Stein & Nordlund
1989). In the context of magnetic fields such a tendency
for downwards transport of magnetic fields has also been
seen in convective dynamo simulations (Nordlund et al.
1992; Brandenburg et al. 1996). Most recently Tobias et al.
(1998) have investigated this effect using their standard
method for studying stellar convection and Mcleod (1998)
presented speculations along the same line of thought that
shall be followed here.

2. Model

The objective of the numerical experiments presented here
is to study the interaction of magnetic fields and solar-
like stratified over-turning convection and differential ro-
tation. The model of the Sun is a “local box” model of a
convectively unstable layer (henceforth referred to as the
“convection zone”) sandwiched between two stable layers.
In order to circumvent problems associated with the very
disparate thermal and dynamical time scales, the model
has a much higher luminosity than the Sun, and all vari-
ables are scaled accordingly. To compare with solar val-
ues, the results must be re-scaled as follows. With a flux
scale of fscl = 3 105 times the solar flux, the velocity
scale factor becomes uscl = f

1/3
scl ∼ 67, the temperature

fluctuation scale factor tscl = uscl
2 ∼ 4.5 103, and the

magnetic field strength scale factor bscl = uscl. For con-
venience, the variables in the model are given in units of
time utime = 103 s, length ulength = 1 Mm, and density
uρ = 1 g cm−3. A Kramers’ opacity scaled inversely with
the scale factor for the total luminosity is adopted. This
ensures that the boundary between the stable layer and
the convection zone is at about the same depth in the
model as it is in the Sun.

2.1. Equations

The full resistive and compressible MHD-equations are
solved using the staggered mesh method by Galsgaard
and others (e.g. Galsgaard & Nordlund 1997; Stein &
Nordlund 1989; Nordlund et al. 1992, 1994):

∂ρ

∂t
= −∇ · ρu, (1)

∂ρu

∂t
=−∇·(ρuu−τ)−∇P+F g + F Lorentz + F ext, (2)

∂B

∂t
= −∇×E, (3)

µ0j = ∇×B, (4)
E = ηj − u×B, (5)
∂e

∂t
= −∇ · (eu)+P (∇ · u)+Qrad+Qvisc+QJoule, (6)

where ρ is the mass density, u the velocity, τ the vis-
cous stress tensor, P the gas pressure, B the magnetic
field density, j the current density, E the electric field, η
the magnetic diffusivity, and µ0 is the magnetic vacuum
permeability. In the momentum Eq. (2) F g = ρg is the
gravitational force, F Lorentz = j ×B is the Lorentz force
and F ext is the sum of other forces associated with the ro-
tation to be discussed below (Sect. 2.4). The gravitational
acceleration g is along the x-direction (equivalent to the
radial direction). Furthermore e is the internal thermal
energy, Qvisc is the viscous heating, QJoule is the Joule
heating, and Qrad = ∇ · (K∇T ) is the radiative heating
(cooling) where K is the inverse Kramers’ opacity. At the
upper boundary an additional expression is used for Qrad

to model surface cooling, see Eq. (7) below.
The code uses a finite difference staggered mesh with

6th order derivative operators, 5th order centering opera-
tors and a 3rd order time-stepping routine (Hyman 1979).

2.2. Boundary conditions

In most stars envelope convection is essentially driven by
surface cooling. The entropy contrast at the surface is far
larger than that at the bottom of the convection zone, if
the convection zone extends over several or many pressure
scale heights. To model this situation, without having to
actually include all layers up to the solar surface, a simple
expression for an isothermal cooling layer at the upper
boundary of the model was used:

Qrad = − (T − Ttop)
τcool

f(x), (7)

where τcool is the characteristic cooling time, Ttop is the
temperature of the cooling layer, and f(x) is a profile func-
tion that restricts the effect to a thin surface layer.

Both experiments with closed and open upper bound-
aries were performed. In order to implement a stable open
upper boundary a buffer zone was allocated, where a fidu-
cial electric field is gradually turned on. The sense of the
electric field is such that it drags the magnetic field out
of the buffer zone, and the magnitude is increased from
zero to of the order of umaxB, where umax is the maxi-
mum velocity in the buffer zone. A layer that is about 10
grid zones from the numerical upper boundary may thus
be considered as the physical open upper boundary. This
layer is far below the real boundary of the solar convection
zone (even the numerical upper boundary of the model is
far below the photosphere).
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2.3. Initial conditions

The hydrodynamic part of the initial condition is a snap-
shot from a well developed stage of a numerical model of
the solar convection zone. The initial condition for the
magnetic field is given by a unidirectional (“poloidal”)
sheet that is placed in the middle of the convection zone.
The sheet is initially in a state of isentropic pressure equi-
librium with the surroundings.

The model has a high degree of stratification with a
density contrast of roughly 5 103 in the convection zone
alone. The thickness of the undershoot layer in the model
is approximately equal to 0.8 HP, where HP is the pres-
sure scale height at the bottom of the convection zone.
This is much larger than the helioseismological upper lim-
its of 0.1–0.2 HP (see e.g. Christensen-Dalsgaard 1995).
Scaling the extension of the undershoot layer naively in
proportion to the velocity (Hooke’s law — the retarding
force increases approximately linearly with distance), the
resulting undershoot thickness, of the order of 0.01 HP,
falls well within the upper limits from observations.

2.4. Latitudinal shear

Both experiments with and without differential rotation
in the convection zone were performed, with the pur-
pose of illustrating the effects of radial and latitudinal
shear and of the Coriolis force on the magnetic field.
In the rotational cases background differential rotation
and the Coriolis force are included by using the force F ext

in the equation of motion Eq. (2)

F ext = F rot + FCoriolis (8)

where FCoriolis = −2ρΩ × u is the Coriolis force and
F rot is a force designed to induce background rotation
(see below).

The differential rotation that is implemented in the
model may not be identified as rotation around e.g. one of
the horizontal axes. Rather the mapping of the rotation
is such that the rotation axis is given by a vector in the
“meridional” (x, y) plane pointing towards the north pole,
i.e. a rotation vector Ω = (Ωx,Ωy, 0) given by

Ωx = Ω(x, θ) cos θ, (9)
Ωy = Ω(x, θ) sin θ, (10)

where Ω = Ω(x, θ) is a fit to the observed solar angular
frequency (from Dziembowski et al. 1989) and θ ∈ [0 :
2π], θ(y) = 2πy/Ly where Ly is half the size of the box
in the latitudinal direction. This choice means that Ω is
parallel to the x-axis (the radial direction) at the poles
and parallel to the y-axis (the latitudinal – or poloidal
direction) at the equator.

An azimuthal background velocity corresponding to
the observed rotation is implemented by adding a
Newtonian term in the equation of motion:

F rot = − ρ

τR
(uz − u0

z)ẑ, (11)

where τR is the time scale of forcing of the background
rotation (one turn-over time has proved to be a good
choice), ẑ is the unit vector in the azimuthal direction, and
u0
z = u0

z(x, y) is the background rotation speed given by

u0
z = −(Ω(x, θ)− Ω0)R sin θ (12)

where R is a characteristic radius in the convection zone
and Ω0 is the angular rotation frequency evaluated at
θ = π

4 .
The differential rotation is then measured relative to

the latitude ± 45o. In the model that latitude corresponds
to the position at fractions of 0.25, 0.75, 1.25 and 1.75 of
the latitudinal extension of the computational box count-
ing the total length as 2Ly (see Fig. 2). At that latitude
there is no radial shear since we set the internal solid body
rotation equal to the in situ azimuthal speed, so that

Ω =

{
Ω(x, θ), x ≥ R
Ω0, x < R.

At other latitudes the peak of the radial shear is located
in the undershoot layer.

The strength of the background rotation may also be
changed by varying the radius R in Eq. (12). Values from
500 to 1400 Mm were used, the higher values in combina-
tion with larger values of τR, in order to still produce the
desired amplitude of the differential rotation.

3. Results

Several experiments with varying initial magnetic field
strengths, numerical resolutions, and upper boundary con-
ditions were performed. First, results from simulations
without rotational effects are discussed (see Table 1), and
then results from a simulation including latitudinal shear
are reported. Although some of the experiments initially
had a maximum field strength of the order of the for-
mal equipartition value, they have been denoted “sub-
equipartition” in Table 1 because the distribution of the
kinetic energy density eK was much broader than the dis-
tribution of the magnetic energy density eM, i.e. the peak
magnetic energy density was smaller than the peak kinetic
energy density even though the most likely value of eM was
similar to that of eK.

A moderate number of grid points were used in these
experiments (a few experiments were also ran at higher
resolutions, up to 145 × 1282, to check for resolution ef-
fects). The advantage of performing relatively small nu-
merical experiments, is that it is possible to perform a
larger number of experiments, with different setups and
with a variety of parameter values. Since it is impossible,
with the limits of currently available computer power to
accurately reproduce solar conditions, it is necessary to
experiment with trade-offs between various constraints.

3.1. The rotation-less case

Figure 1 shows two sets of magnetic field isosurfaces at
two different instants in time for an experiment with
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Table 1. Summary of five experiments not including rotational effects

Experiment Initial field Plasma β Grid points Top boundary

[i] Sub-equipartition 2 103 78× 64× 64 Closed

[ii] Kinematic 2 105 78× 64× 64 Closed

[iii] Sub-equipartition 2 103 63× 64× 64 Open

[iv] Super-equipartition 200 63 × 64× 64 Open

[v] Super-equipartition 20 63 × 64× 64 Open

Fig. 1. Snapshot of magnetic field isosurfaces: light gray (yellow), low field strength — dark grey (blue), 10 times higher field
strength (colors refer to color versions of the figure, available at http://www.astro.ku.dk/∼aake). Left: early in the experiment.
Right: at a late time

a sub-equipartition magnetic field (experiment [i], in
Table 1): The poloidal sheet of magnetic field initially
placed in the middle of the convection zone quickly starts
to interact with the convection (Fig. 1, left panel). At a
subsequent time (Fig. 1, right panel) the magnetic field
more or less fills the whole volume of the convection zone
and penetrates into the stable layer below.

Figure 3 shows the horizontally averaged field at 7
equidistant instants of time for experiment [i]: the poloidal
sheet is spread out, and the distribution of poloidal mag-
netic flux settles to a characteristic distribution. The high-
est (horizontally averaged) poloidal flux density occurs in
the overshoot layer, and in these particular experiments a
significant fraction of the total flux also resides there. In
the real Sun, this fraction may be expected to be much
smaller, because the undershoot layer is much thinner
there. Given the shape of the distribution, with no partic-
ular enhancement in the undershoot layer, it is likely the
Sun has a correspondingly smooth distribution, with the
majority of the poloidal flux residing inside the convection
zone.

The “pumping effect” described in the above takes
place because of the topology of the over-turning strat-
ified convection: of all the fluid parcels threaded by mag-
netic field lines in the initial state about half are initially
ascending. However, because of the stratification, most of

Fig. 2. The background rotational velocity Eq. (12) (in
km s−1) as a function of latitude (in units of π); the two equa-
tors of the model are at the latitudes 0.5 and 1.5 (corresponding
to θ = π/2 and θ = 3π/2, respectively), while the poles are at
0, 2 (north pole) and 1.5 (south pole)

the ascending fluid parcels have to over-turn and descend
and most of these keep descending down to the bottom of
the convection zone (Stein & Nordlund 1989). The fluid
parcels drag the threading field lines along and hence an
appreciable fraction of the field is transported downwards.
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Fig. 3. The horizontally averaged magnetic field 〈By〉 as a
function of radius for 7 different times (experiment [i]): t =
0 (initial field – solid curve), 3.3, 6.5, 9.8, 13.0, 16.3 and 19.5
(thin dashed curves), and time-average (solid curve) turn-over
times. The approximate bottom and top of the undershoot
layer are indicated by two vertical dashed lines

Fragments of the field that are caught in ascending flows
are advected upwards. In the experiments with an open
upper boundary some of these fragments escape through
the top of the computational domain and flux is system-
atically lost (see the discussion below).

Even in the cases of super-equipartition fields (e.g. ex-
periments [iv] and [v]) the magnetic field is pushed down-
wards in the initial phases until it reaches the undershoot
layer where the kinetic energy flux decreases. Because
the overall magnetic flux decreases through flux loss at
the surface the magnetic field eventually enters a state in
which it is below equipartition.

In the case of an initial field below equipartition the
pumping effect is — not surprisingly — even more pro-
nounced than for the super-equipartition fields: Fig. 4
shows the results for three cases where the magnetic field
was below equipartition (experiments [i], [ii] and [iii]) and
the dynamics thus were dominated by the convective mo-
tions. The average magnetic field is distributed over the
entire convection zone, with maximum (horizontally aver-
aged) flux density in the undershoot layer.

The radial distribution of the magnetic flux present
in the convection zone is not very different for the cases
with a closed upper boundary (left panel in Fig. 4) and the
cases with an open upper boundary (right panel in Fig. 4),
but the total amount of magnetic flux is rapidly reduced
during the first few turn-over times, when there is a sig-
nificant loss of poloidal flux through the upper boundary.
This does not influence the distribution of flux over depth
much, however, it only influences the amount of flux that
is available for distribution.

The flux loss in the models with an open upper bound-
ary is strongly exaggerated in comparison to the Sun. The
real flux loss may be expected to be significantly smaller
than in the models with open upper boundaries discussed
here: Much of the weak ascending flux must over-turn

rather than reach the solar surface since it is embedded
in a fluid of which only a tiny fraction (∼0.1% estimated
from mass flux amplitudes) reaches the solar surface. Note
that the magnetic field considered is weak and incoherent
and does not have sufficient buoyancy to overcome the
drag of the fluid motions.

A supplementary numerical experiment confirms the
exaggeration of the flux loss: moving the open magnetic
boundary four mesh point upwards, corresponding to
about 0.6 density scale heights, reduces the flux loss by
about 20%. The new boundary (at ρ = 2.5 10−2 g cm−3)
is still over ten density scale heights (sic) away from the
real solar boundary (at ρ ∼ 3 10−7 g cm−3). Almost all of
the flux that is still lost in the modified experiment may
thus in the case of the real Sun be expected to turn over
before reaching the solar surface.

Figure 6 shows the average poloidal field strength for
the experiments with an open upper boundary (exper-
iments [iii], [iv] and [v]). The relative reduction in the
poloidal flux by the escape of magnetic structures through
the upper boundary does not depend much on the field
strength, for strengths up to several times formal equipar-
tition values.

The rate of flux loss does depend on the field strength
but in a rather counterintuitive way: The stronger the ini-
tial field the smaller the initial reduction rate. Naively one
might expect that if the field strength is large the higher
buoyancy would make the field escape faster. The expla-
nation is that the over-turning of the fluid is slowed down
in the cases with a stronger initial poloidal flux sheet. The
fragmentation of the sheet is also slower in the case with
a stronger field.

The magnetic field in the convection zone rapidly be-
comes very fragmented: while the field in the beginning
is uniformly distributed in the sheet, quickly a picture
develops where the field in the convection zone becomes
very intermittent, while the field that is pumped into the
undershoot layer is much more uniform.

The reason for this difference in topology between
the magnetic field in the convection zone and in the un-
dershoot layer is that once the magnetic field has been
pumped down into the undershoot layer it is less suscepti-
ble to fragmentation, since the motions in the stable layer
have a much smaller amplitude and are not as systematic
as the motions in the convection zone.

The degree of intermittency and fragmentation of the
field in the convection zone depends on the strength of
the initial poloidal magnetic sheet. The poloidal magnetic
sheet is more stable towards the initial fragmentation if its
field is stronger since in that case a larger force is needed
to over-power the tension in the poloidal field lines.

3.2. A case with latitudinal shear

In what follows, results are presented for a particular
simulation that includes shear and the Coriolis force
(through the force F ext in the equation of motion Eq. (2)).
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Fig. 4. Horizontal average of the poloidal By field for two experiments (left panel: solid line, experiment [i] and dashed line,
experiment [ii]) that had a closed upper boundary (after 25 and 30 turn-over times respectively), and for experiment [iii] (right
panel) that had an open upper boundary (after 18 turn-over times). The amplitudes of the curves have been scaled to have the
same maximum as experiment [i] to compare to experiment [i]

The physical size of this experiment was 381 × 800 ×
800 Mm and the numerical resolution 69×1352 grid points.

The initial condition of a uniform poloidal sheet placed
at a certain depth may be said to be rather arbitrary.
However, an arbitrary state is both appropriate and useful
in this case, since the system rather quickly enters a state
that is independent of the initial condition i.e. there is no
internal long-time “memory” in the system.

Initially the pumping effect ensures that an on the av-
erage poloidal field is injected into the bottom undershoot
layer, and after about four turn-over times the poloidal
flux density has a maximum below the convection zone of
the model.

After an initial transient process where the differen-
tial rotation establishes itself and the over-turning con-
vection distorts the poloidal sheet, the system enters a
well-developed state, where the magnetic field displays
the structure of the differential rotation. At this point,
the magnetic energy and the toroidal field strength have
increased to a significantly higher level than their initial
values (see the two top panels in Fig. 5), and the rms
toroidal field is larger than the rms poloidal field. The av-
erage poloidal flux has dropped to about half the initial
value due to flux loss at the surface (see the bottom two
panels in Fig. 5) but this loss of magnetic flux through the
upper boundary is somewhat halted after the formation of
a large-scale toroidal field.

At first the growth of the toroidal field is fast while
the background rotation increases toward the profile de-
termined by Eq. (12) on the time scale τR (cf. Eq. (11)).
When the background rotation profile is fully attained by
the fluid, the toroidal magnetic field begins to increase
linearly, with the rate of increase given by the latitudinal
shear and the original poloidal field strength. The struc-
ture of the magnetic field directly reflects the latitudinal
dependence of the background azimuthal velocity field as
a result of the latitudinal shear.

In the well-developed state after the main flux loss
has taken place, the dominant magnetic field is a strong
toroidal flux system located near the bottom of the con-
vection zone, i.e. it is not pumped into the undershoot
layer but it does not escape from the convection zone ei-
ther: the “center of gravity” of the magnetic field is above
the bottom of the convection zone (see Fig. 7).

Figure 8 shows a view of the toroidal flux system: four
toroidal flux streets are formed on each side of the equa-
tors, in the regions where there is a maximum shear.

The magnetic field just below the convection zone ro-
tates more slowly than the field just above. This is a mech-
anism that may twist the magnetic field lines that connect
across the equator regions.

As the initial poloidal sheet fragments while being
wound up, toroidal flux structures leave the convection
zone through the open upper boundary. In a rotating
frame of reference vertical motions lead to horizontal mo-
tions through the action of the Coriolis force. One special
case is the rise of flux loops that are rotated so that they
emerge tilted with respect to the latitudinal circle, and an-
other is the excitation of meridional circulation, as a result
of the transport of angular momentum: in the simulation
both of these effects are found.

The surface of the Sun is an extremely important place:
not only may flux be lost there, but the surface constitutes
a “reconnection region” where vertical field lines are effec-
tively “cut over”, and where the remaining “stubs” may
be advected passively by the horizontal surface motions.
Field lines of course actually continue into the corona and
either connect back into the photosphere or connect out
into interplanetary space. However, reconnection is ob-
served to proceed so rapidly in the corona and the mass
density is so low there, that from the point of view of the
sub-surface dynamics the connections above the surface
are of little importance.

Figure 9 shows two panels with a small section of the
box, with snapshots of the magnetic field, looking down
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Fig. 5. The case with latitudinal shear: four panels showing the average magnetic energy 〈eM〉, the rms field strengths Bz
(toroidal field — solid line) and By (poloidal field — dashed line), the ratio of toroidal to poloidal field, and the average poloidal
field 〈By〉 as functions of turn-over times

along the two toroidal flux streets. A magnetic flux struc-
ture is sticking out through the surface, and is moving
towards the equator between the two toroidal flux streets,
but at the same time it is connected through a subsur-
face structure to one of them. As a result of the drift of
the surface-structure, the magnetic field lines that make
up the subsurface structure have a tendency to become
inclined with respect to the toroidal street to which it
connect, and hence a poloidal field component is formed,
with opposite polarity relative to the original one.

4. Discussion and conclusions

The main conclusions that may be drawn from the study
of the interaction of a magnetic sheet with stratified over-
turning convection in the absence of rotation are the
following:

– Stratified convection induces a strong tendency to
transport magnetic flux downwards;

– The distribution of horizontally averaged magnetic
flux peaks in the undershoot layer, but the bulk of
the flux is in the convection zone;

– The magnetic field that resides in the undershoot layer
is considerably less fragmented than the magnetic field
in the bulk of the convection zone;

– Unless an open upper boundary is placed sufficiently
close to the actual solar surface, i.e. at sufficiently low
density, there may be a substantial (and exaggerated)

Fig. 6. The normalized average poloidal field strength as func-
tion of time in turn-over times for the experiments with an
open upper boundary condition: (experiment [iii] dashed curve,
experiment [iv] solid curve and experiment [v] dashed-dotted
curve)

loss of flux through the open boundary as flux is carried
around by the over-turning convection;

– The transport properties (both the downwards trans-
port and the surface flux loss) are quite robust and
field strengths well in excess of formal equipartition
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Fig. 7. The depth of the location of the maximum magnetic
energy 〈eM〉 as a function of turn-over times

are needed to change the distribution and rates signif-
icantly.

Additionally, the results of the simulations including lati-
tudinal shear offer the following conclusions:

– The system rapidly forgets the initial condition and
distributes the flux in a generic vertical distribution;

– The latitudinal shear of the differential rotation shapes
the magnetic field and creates strong toroidal flux
streets located at mid latitudes;

– While magnetic flux indeed is pumped into the under-
shoot layer, the center of gravity of the magnetic field
is above the bottom of the convection zone;

– Magnetic field lines and flux structures penetrating the
upper boundary move passively according to the sur-
face motion.

Where do these results leave the “storage problem”, i.e.
the problem of explaining how the magnetic field can re-
main stored while being amplified by differential rotation?

The toroidal magnetic field in these simulations reach
peak field strengths of a several tens of kG (scaled to
the Sun). The peak field strengths occur near the bot-
tom, but still inside, the convection zone. It is conceivable
that emerging flux regions form when buoyancy finally
becomes dominant, and that this occurs at field strengths
of the order of 100 kG, as has been deduced from emer-
gence and tilt patterns by several investigations. Because
of numerical limitations we were not able to study that
process with the current series of experiments—future ex-
periments with higher resolution and even larger density
contrasts are needed here.

Besides offering a clue to the operation of the solar
dynamo the results presented here may also contribute to
the understanding of magnetic field generation in other
late type stars. For example; the fact that no undershoot
storage is available in the case of magnetically active fully
convective M dwarf stars (e.g. Chabrier & Baraffe 1997)

Fig. 8. A snapshot of strong magnetic field lines (blue) and
magnetic field isosurfaces (yellow)

is generally considered to be a problem (see e.g. Allard
et al. 1997; Küker & Rüdiger 1999) — this ceases to be a
problem in the scenario presented here.

We note that, even though the loss of magnetic flux
at the upper boundary is exaggerated in the models pre-
sented here, such a loss is certainly a real effect that is
important to include, since the Sun is known to loose a
considerable amount of toroidal magnetic flux during an
activity cycle (e.g. van Ballegooijen 1998).

Lastly we find it important to emphasize that the vi-
sualization of “emerging” flux structures and field lines
(Fig. 9) illustrates a mechanism first pointed out by van
Ballegooijen (1995, private communication) that may be
crucial for the reversal of the poloidal field: flux structures
that rise and penetrate the surface effectively results in
the field lines being “cut” at the surface, with the lead-
ing polarity tending to drift towards the equator, and the
following polarity tending to drift towards the pole. The
result is that subsurface connections between the follow-
ing polarity of one emerging structure and the leading po-
larity of another trailing structure may become tilted in
the sense opposite to the tilt associated with the normal
winding of the field. When such reversed tilts are caught
by the differential rotation, they will effectively lead to
“unwinding” and reversal of the poloidal field component.
This again is an important topic for future studies.
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Fig. 9. A view of one quarter of the box, centered at one of the equators, where a magnetic structure is emerging through the
surface and is moving towards the equator. Field lines in white and grey (purple) isosurfaces of magnetic field strength. The
snapshot to the right is taken ∼half a turnover time later than the one on the left
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1992, MNRAS, 259, 465

Johns-Krull, C. M., & Valenti, J. A. 1996, ApJL, 459, L95
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