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Abstract. We present results from a series of numerical simulations of
kinematic dynamo action by spatially periodic ABC flows. Numerical
results are reported for the ‘normal’ ABC flow with A: B:C=1:1:1
and for the case of A: B : C =5 :2: 2 without stagnation points. We
focus on the dynamics of the magnetic structures that are developed by
the flow and outline the dynamical processes that are responsible for the
amplification of the magnetic field.

1. Introduction

The general dynamo problem refers to the amplification and maintainance of a
magnetic field in an electrically conducting fluid of resistivity . In the kinematic
case the velocity field u as given, and not influenced by the development of
the magnetic field. Thus, the Lorentz force is assumed to be negligible in the
equation of motion. The governing equation for the magnetic field is the familiar

induction equation
0B

E:Vx(uxBan?B. (1)

We study the kinematic problem for steady three-dimensional flows with

and without stagnation points, namely the special class of ABC flows. The

velocity field of an ABC flow is given by the sum of three parameterized Beltrami
waves:

u = A(0, sin kz, cos kz) + B(cos ky, 0,sin ky) + C(sinkz, cos kz,0),  (2)

where A, B and C are constant coefficients and k is the wavenumber of the flow.
The numerical simulations are performed in a ¢ = 27r-periodic box with &k =1
with a computational code that is a simplified version of the finite difference
staggered mess code by Nordlund, Stein and others (see e.g. Nordlund et al.
1994).

The flow u is called a fast dynamo if the exponential growth rate of the
magnetic field remains positive and bounded away from zero in the limit of
vanishing diffusion (n — 0). This means that the magnetic field amplified by a
fast dynamo evolves on a timescale comparable to the advective timescale. If

"Present address: Stockholm Observatory, SE-133 36 Saltsjobaden, Sweden
1



the growth rate tends to zero then the dynamo is a slow dynamo and the growth
of the field occurs on a timescale between that of advection and the much longer
diffusive timescale.

The ‘normal’ ABC flows with A: B: C =1:1:1 (also referred to as the
“111” case) is probably the most studied type of ABC flow in the literature.
The reason is that it, on the one hand, is a simple example of how a complex
field may be able to amplify a weak seed magnetic field and, on the other hand,
displays a behavior that resembles real astrophysical dynamos.

Results for the normal ABC flow together with some aspects of the kine-
matic dynamo produced by this flow are discussed in Section 2. In Section 3
preliminary results are presented for the more general case of ABC dynamo
action without stagnation points, pointing out similarities and differences com-
pared to the normal case. Section 4 is the conclusion.

2. The Normal ABC Flow

In the case of normal ABC flows two windows of dynamo action exist: Arnold
and Korkina (1983) identified a window of dynamo action ranging from a mag-
netic Reynolds numbers Re,, = uf/n, of 8.9 to 17.5 just above which the mag-
netic field decayed. Galloway & Frisch (1986) discovered another window of
dynamo action beginning at Rep,, = 27 and extending at least beyond 550. In
both windows cigar-like magnetic structures appear that are centered on stag-
nation points of the flow (see below) as found by e.g. Childress (1979), Childress
& Soward (1985) and Galloway & Frisch (1986).

Even though the normal ABC flow is steady, in certain regions of the flow
trace particles follow chaotic paths, but more relevant for the modes of dynamo
action in the general diffusive case is the stretching ability of the flow.

2.1. Flow Topology

The normal ABC flow has 8 stagnation points (see Figure 1) of two different
types;

e a-type stagnation points where stream lines are diverging along an axis
through the stagnation point, and converging in the plane perpendicular
to the axis,

e [-type stagnation point where stream lines are converging along the axis,
and diverging in the plane.

The stream lines of the flow have a three-fold symmetry in the converging (di-
verging) planes through the a () type stagnation points (see Figure 1). The
three-fold symmetric ‘leaves’ of the converging/diverging stream lines are sep-
arated by separator lines; both these separator lines as well as the leaves of
convergence/divergence connect to other stagnation points: While the separa-
tor lines and leaves of diverging stream lines of a [ point connect to three «
type stagnation points, the reverse is true for an a point.

In itself it is not so important that there happens to be 8 stagnation points
in the normal ABC flow; after all, many interesting flows such as the ones we
discuss in the latter part of this paper do not possess stagnation points, and in
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Figure 1. A view showing the structure of the normal ABC flow:
The small bead-shaped isosurfaces show the positions of the stagnation
points of the flow (« type and § type). The stream lines illustrate the
flow topology. Near the center of the view is a 3 type stagnation point
in a plane of three-fold symmetry with diverging stream lines. In the
upper right corner is an « type stagnation point connecting to the g
type point via a heteroclinic orbit.

any case a stagnation point may be removed by a translation of the coordinate
system. Rather, it is the stretching ability of the flow that is relevant for the
dynamo action. In the high degree of symmetry of the normal ABC flow, the
stagnation points coincide with local extrema of the stretching rate. Hence,
the two types of stagnation points may be seen as convenient markers of these
regions.

2.2. Exponential Amplification

As shown in Figure 2, an initially weak seed field is amplified on an exponential
timescale. For intermediate Rey, (in the second window of dynamo action), an
oscillating behavior is associated with the growth (as also noted by e.g. Galloway
et al. 1986, Galanti et al. 1992 and Galanti et al. 1993). The period of the
oscillation may be understood as a direct consequence of the spatial periodicity
of the ABC flow (Galanti et al. 1992). The period of the oscillation increases
with increasing Rep, until a transition to a non-oscillating regime occurs at a
Rep, of about 200 (Lau & Finn 1993), see Figure 2. As mentioned by Galloway
et al. (1992) and Childress & Gilbert (1995) it is possible to rig the initial
seed magnetic field so that only one mode of dynamo action is present in the
calculations by choosing the following special initial magnetic field:

B = (sin(kz) — cos(ky), sin(kx) — cos(kz), sin(ky) — cos(kz)), (3)
that is an eigenmode in the diffusion-less case (n = 0).
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Figure 2. Four panel showing the magnetic energy as function of
time for increasing magnetic Renolds number: Rep, = 12, 40, 200, and
1600.

In that case the magnetic field is not amplified in the second window of
dynamo action (see also Galloway et al. 1992). Childress & Gilbert (1995) used
this initial condition together with the so called ‘flux conjecture’ to try to deduce
the limiting growth rate of the ABC flow. They found exponential growth of
the flux in a selected region. The growth rate derived does not, however, agree
with the asymptotic growth rates found by Galloway et al. (1992) and Lau
& Finn (1993) and one should indeed not expect to recover the growth rate
of an exponential growing mode, by studying the stretching of field lines in
a secularly decaying mode. Figure 3 shows that the mode in the case of the
initial condition given by Eq. 3 is an exponentially decaying oscillating mode.
Because of numerical round-off errors the amplitude of the growing mode is not
identically equal to zero in the initial condition, and eventually its inevitable
growth and the decay of the initialized mode results in a transition from decay
to growth of the total magnetic energy. Galloway et al. (1992) found no growing
solution and they concluded that “something odd is going on”.

2.3. Dynamical Amplification Process

When the induction equation is evolved from a weak uniform seed field, flux
“cigars” rapidly arise at four of the eight stagnation points; the a-points. The
flux cigars are aligned along the axis of divergence through the « type stagnation
points, and point directly to the 8 type points.
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Figure 3.  The evolution of the total magnetic energy Ejs as a func-
tion of time for two experiments (with the same moderate Rep,) with
an initially uniform magnetic field (thick line) and with the initial con-
dition given by Eq. 3 (thin line).

We find that a second set of flux cigars is formed next to the 4 primary
cigars, and conclude that rather than “obscuring” the physics (as noted by
Galloway & O’Brian 1993), these structures are absolutely essential. These
secondary cigars have the opposite polarity of the neighboring cigars, and they
are connected by reconnecting field lines to the primary cigars.

Figure 4.  Four snapshots (only part of the periodic box is shown) of
an experiment within the second window of Rep, showing the evolution
of the double flux cigars. Also shown are converging stream lines and
the diverging axis through the « point. The four pictures correspond to
four instants during the oscillation in the magnetic energy, at fractions
of 0, 0.14, 0.87 and 1 of the period.

These secondary flux cigars form near the « point at the separator line
next to the primary cigar (see Figure 4). As the secondary cigar forms, the
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primary cigar moves slightly away from the center of the stagnation point. In
the simulation within the oscillatory regime (in the second window of dynamo
action), as the energy increases at the beginning of a ‘cycle’, the secondary
cigar increases in size and field strength until the two cigars become equal in
size midway through the cycle. The primary cigar now becomes smaller and
actually vanishes at the end of the cycle, and at that time the growth of the
energy slows down, and even reverses (see Figure 2). At that point the flux cigar
that was previously the secondary cigar moves into the center of the stagnation
point (see the evolution in Figure 4).

It is possible to illustrate the whole cycle by considering the “path” of mag-
netic field lines (Dorch 1998): In the beginning of a cycle (say, at a local energy
minima in Figure 2), there are only one cigar at each stagnation point, but field
lines begin to pile up at the separator line close to the a point where a secondary
cigar eventually forms. These field lines come from the plane of divergence of
one of the neighboring 8 points and move along two sets of converging stream
lines on opposite sides of the separator line; where the stream lines reach the
a point, they have twisted so that field lines that are carried along them are
parallel to the axis of divergence through the a point. At the opposite side of
the o point, one of the three leaves of diverging stream lines from a (8 point
supply field lines of the right polarity to the primary flux cigar. While these two
flux cigars sit near the a point and receive field lines, the field lines that forms
them may reconnect between them because of their opposite polarities and the
non-vanishing diffusivity. The reconnected field lines moves as tight “hooks”
out along the axis of divergence through the a point towards the plane of the
[ point where an intricate folding takes place and the field lines are stretched
out into a triangular shape along the three fold symmetric leaves, before being
carried to yet another a point (Dorch 1998).

The magnetic energy grows through most of the cycle, but the main growth
takes place while the two cigars have about equal sizes. This is the time at which
the most rapid reconnection take place, and thus the time where the largest
amount of magnetic flux is released down along the axis of divergence through
the a points. Thus, the reconnection process is essential to the operation of this
mode of the dynamo: If there were no reconnections, the magnetic field near the
[ points could not be replenished. The § point plane of divergence constitutes
a discontinuity region, where field lines change direction from above to below.

The cycle discussed above is actually only half a cycle; a full cycle requires
that the flux cigars return to the original polarity and this is only achieved after
two of the above cycles.

For large Rey, (within the non-oscillatory regime) the amplification process
is similar to what was described above for the lower Re,, case. However, for
large Rey,, there are no oscillation associated with the amplification process;
the double cigars always consist of one large strong cigar and one smaller and
weaker one with the opposite polarity. The secondary cigars never becomes
stronger than the primary, but the mechanism that drives the amplification
process remains the same for increasing Rey,.



3. ABC Flows without Stagnation Points

An interesting question is in what respect the evolution of the magnetic field
in ABC flows without stagnation points differs from the ”standard” case. We
have experimented with three such cases, namely the A:B:C=5:2:2, A:B:C=4:1:1
and the A:B:C=2:1:1 case, and show preliminary results from our numerical
experiments.

The time evolution of the magnetic energy for all three cases is shown in
Figure 5: Initially, the dominating mode is an oscillatory exponentially growing
mode, but after a large number of oscillations, a new dominating mode takes
over the magnetic field amplification. This mode corresponds to a growth rate
that is more than twice as large as the growth rate of the first mode and it is
also oscillatory, but with a 5 times smaller period and a very small amplitude.
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Figure 5.  The total magnetic energy as a function of time on a loga-
rithmic scale for the 5:2:2 case (left), 2:1:1(middle) and 4:1:1(right) at
Rem = 120.

3-D visualizations of the magnetic field reveal that initially double magnetic
flux sheets develop (see Figure 6). These sheets have oppositely aligned fields
and current sheets form in the gap between them. Reconnection occurs in the
gap and the reconnected field lines form tight “hooks” as they pass through the
current sheet (see Figure 7, left panel).

Figure 7 (left panel) shows that the strongly bent field lines form two differ-
ent pairs of flux sheets (see also Figure 6, right panel). A visualization of strong
current density isosurfaces is shown in the right panel of Figure 7, pointing out
the location of the current sheets between the oppositely aligned sets of field
lines. The picture outlined in the last paragraphs allow us to understand the
amplification process that maintains the initially oscillatory growth of the mag-
netic field: Folding of the field takes place and the magnetic energy increases.
However, this folding is not constructive. The field is not brought into perfect
alignment and there are bands of field pointing in the opposite direction in be-
tween the sheets. Again a key ingredient for the above described mechanism is
the reconnection of field lines. If there was no reconnection, the magnetic field
could not be replenished in the regions where folding of the field occurs and the
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Figure 6. The initial magnetic topology in the A:B:C=5:2:2 case
(left). Isosurfaces of magnetic field strength are visualized, showing
structures that are sheet-like. The right panel shows that double sheets
are created after the initial transient phase (only a small part of the
computational box is shown). These structures have oppositely aligned
field lines.

amplification process of this mode would not be possible. Thus, this process is
similar to the amplification process in the normal ABC case. The main differ-
ences are that double sheets supply field lines by reconnection instead of double
cigars, and that the flux structures are advected instead of being confined to the
regions around the stagnation points.

Figure 7. Two different sets of magnetic field lines (left). The right
panel contains isosurfaces of strong electric current showing the relation
of the current to the double sheets (5:2:2 case).

The operation of the high growth rate mode in Figure 5, is somewhat dif-
ferent: The magnetic field continues to consist of sheet-like structures but these
structures now have the same polarity. Thus, the flow brings magnetic field
lines of the same polarity into alignment, and constructive folding takes place
increasing the magnetic energy significantly.

Figure 8 shows three slices of the xy-plane of the computational box. There
are fine bands (sheets) of strong magnetic field, indicating the stretching by the
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flow. T'wo of the sheets on the right edge of the first slice have the same sign and
point roughly in the same direction. On the bottom and right of the same slice,
however, there are sheets of field pointing in the opposite direction. As time

Figure 8.  The three panels show the constructive folding of the mag-
netic field (5:2:2 case, Rey,=120). The z-component of the magnetic
field is plotted for 0 < z,y < 2.

goes on, both pairs (in black and white color) come very close together and fold.
Thus the field is brought into perfect alignment by the flow and the folding is
constructive. Each time the sequence is repeated, the flux is increased because
of the constructive reinforcement of the sheet-like magnetic field structures.

4. Conclusions

The results obtained so far concern kinematic dynamo action produced by dif-
ferent types of ABC flows. In the normal A: B: C =1:1:1 case, we find
that the dynamo action in the two windows of Rey, correspond to two distinct
modes. In both cases the replenishing of the field near the 8 points is crucial
for the operation of the dynamo.

Certain properties of the magnetic transport are nearly invariant as Rey, is
increased; the size of the regions where diffusion is important become smaller

1

as Rep,” but reconnection still takes place and the field in the crucial 3 regions
continues to be replenished. In the bulk of the flow where the stretching takes
place, the decrease of the diffusivity is unimportant since the field lines there
are not influenced by diffusion; they tend to obtain a certain alignment with the
flow topology given by the stretching that is an invariant property, and hence
the exponential rate of increase the magnetic field remains nearly the same. It
thus appears very unlikely that the double-cigar mode should go away in the
limit of infinite Rey,, and that the normal ABC flow would not be a fast dynamo.

In the case of an ABC flow without stagnation points (the A : B : C =
5:2:2 case), we show that the magnetic structures are sheet-like rather than
cigar-like. There is one mode where the amplification process is similar to the
case of the normal ABC flow while a second mode based on constructive folding
has a larger exponential growth rate and thus becomes the dominating mode.

Similar behavior is found for other flows without stagnation points (e.g. for
A:B:C=2:1:1and A: B:C =4:1:1) and the magnetic structures that
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are developed have a similar topology. Reconnection and stretching of field lines
are key ingredients for the amplification of the field, but the results for this type
of flow are preliminary. Numerical simulations, at Rep up to 800, have been
performed and show that the growth rate increases with Rep. Thus, there is
evidence that these flows are fast dynamos as well, though simulations at higher
Rem would be of great interest and necessary to confirm any conclusion.
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