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Abstract

After a short review of the history of the solar dynamo problem and the
classic dynamo models we state what we think are the most important ques-
tions and problems that contemporary dynamo theory is facing.

1 Introduction

The Sun is an active star. Although it has shone with only relatively little variation
in its luminosity since long before the dawn of mankind it is still one of the most
active astronomical objects known — our own Earth is effected strongly by it: The
famous "solar-wind” that sweeps through the magnetic field of the Farth owes its
existence to the activity of the Sun.

One way to determine the periodicity of the solar activity is by looking at the
behavior of the sunspots on the surface of the Sun. The sunspots follow a very
regular activity cycle: In 11 years time the pattern that the sunspots form on the
solar surface move from high latitudes to the equator (on both hemispheres) and
then appear again at high latitudes. The polarity of the magnetic field of the Sun
reverses every time and hence the "real” period of the solar cycle — the time it
takes to get back to the same pattern and polarity — is 22 years.

The magnetic field of the Sun is detected by the Zeeman splitting of hydrogen
lines in the light emerging from the relatively dark sunspots and other magnetic
areas.

Sunspots are magnetic flux tubes that penetrate the photosphere of the Sun.
Because such a tube is in pressure equilibrium with its surroundings the mass density
inside the tube must be smaller than the mass density of the surroundings and
therefore it rises to the surface in a stratified atmosphere. This is just the usual
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Earth. The energy flux emerging from such a tube when it comes through the
atmosphere must be smaller than the energy flux from the surroundings because
the magnetic field inside the tube prohibits energy transport by convection and
allows only radiative energy transport; therefore the sunspots are darker than their
surroundings.

Okay, — but where do these magnetic flux tubes then come from? How are they
formed? Tt is thought that these tubes are formed in or just below the convection
zone and then rise by buoyancy up through the convection zone until they encounter
the photosphere and form sunspots or other magnetic structures. But the origin and
the history of evolution of the tubes are not well-known at all!

The current belief is that some kind of dynamo process is taking place in the
narrow so-called undershoot region just between the radiative dominated interior of
the Sun and the overlaying convection zone. This dynamo converts kinetic energy
into magnetic energy, just as a bicycle dynamo does.

2 Theoretical Background for the Dynamo

The presence of magnetic fields in many astrophysical objects raises the question
of their origin. Dynamo theory suggests that magnetic fields are generated by the
motions of conducting fluids. The only alternative is to assume that magnetic fields
are primordial’. Some scientists go as far as advocating that turbulent diffusion is
strongly suppressed in low-diffusion plasmas and that, consequently, astrophysical
dynamos are impossible. Thus, one should consider the possibility of primordial
fields. But this conclusion is based on an over -interpretation of a (theoretical and
numerical) 2D-scenario. In three dimensions magnetic fields have ways of moving
that are not available in two dimensions. The consequence is that turbulent diffusion
of large scale structures is possible and that it is not significantly suppresed in an
intermittent plasma.

But what is a dynamo? A dynamo can be defined to be a process in which
some of the kinetic energy of an electrically conducting body is converted into mag-
netic energy. The basic principle can briefly be stated as follows: Astrophysical
systems are composed of a highly electrically conducting gas made up of freely mov-
ing charged particles (electrons, protons and ions). Such a gas is called a plasma.
A consequence of the high electrical conductivity is that the magnetic fields are
"frozen” into the plasma (as first discussed by Alfven). Thus, plasma can move
freely along field lines, but in motion perpendicular to them, either the field lines
are dragged with the plasma or the field lines push the plasma.

It has been found that ”turbulent” motions of the plasma can amplify small seed
magnetic fields and generate much larger magnetic fields. More particularly these
motions could give rise to fields that periodically oscillate and this could possibly
explain the solar activity 22 year cycle.

In this framework the Sun presents us with an oscillating dynamo that can

1Primordial fields can be defined as fields that have been around too long to need explaining.
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differential rotation through transport of angular momentum. Differential rotation
tends to pull out a purely poloidal field and create toroidal flux (toroidal ~ azimutal,
see the next section). When this azimuthal field becomes sufficiently strong the spiral
lines of force are shaped like 2-loops that arise to the surface because of magnetic
buoyancy. In the process of rising they are rotated by Coriolis force, so that a (new)
poloidal field is generated in the opposite direction to the original one. The role of
the turbulent transport is to spread the new poloidal field. This scenario leads to
an oscillation between a poloidal and a toroidal magnetic field.

Our limited understanding of convection and turbulence is the main obstacle in
making more qualitative models of the above scenario. Turbulence shreds, amplifies
and transports the field. A basic property of a turbulent plasma is the tendency
to become extremely intermittent; vorticity concentrates into thin vortex tubes and
the magnetic field concentrates into thin flux tubes. The turbulent diffusion is also
central to classical dynamo arguments. Locally, the magnetic energy density can
become comparable to the kinetic energy density long before an estimate of the
amount of magnetic energy based on a diffuse field would. In this way, we are
reconsidering classical concepts such as turbulent diffusion of magnetic fields. It is
the detailed properties of the turbulence that determine what the dynamo will look
like.

2.1  Cowlings theorem

Many years ago Cowling discussed the dynamo problem and sharpened it by showing
that 7 a steady avisymmetric magnetic field cannot be maintained by fluid motions”.
It may be established as follows (see eg. [5] or [6]).

We can write a steady axisymmetric field as the sum of a toroidal component B,
and a poloidal component B,. The toroidal component is an azimuthal component
and the poloidal component represents the sum of the radial and axial components
in cylindrical coordinates.

B = Byey + B, (1)

Because of the axisymmetry the magnetic configuration in all meridional planes
is the same and must consist of closed field lines (The meridional planes are planes
through the axis of the symmetry). In each of these meridional planes there must
therefore exist at least one point with B, = 0. Hence, the field is purely azimuthal
(Bs # 0). Now Ohm’s Law in the form j/o = E 4+ vxB may be integrated around
the azimuthal neutral line (c) (ie. Figure 1) to give

ij/a-ds = f;E-ds + j{VXB-ds (2)

or

fj(bds/a - /v « E-dS + fva-ds, (3)
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Figure 1: A sketch of an axi-symmetric field configuration, made up of an azimuthal

field, B,shown by the heavy arrows, and a dipole meridional field, indicated by the closed
lines of force circling the neutral point in the meridional planes

where the element of length ds is in the ¢-direction. Stoke’s theorem has also
been used to transform the first term on the right-hand side.

We assumed that the magnetic field is steady. That means V x E vanishes due
to Faraday’s Law. At neutral points B is parallel to the path elements ds so that
the triple scalar product v xB-ds vanishes and the integral of Ohm’s Law reduces
to §.jsds = 0. But since the current j, is non vanishing in a neighborhood of a
neutral point this cannot be satisfied. The conclusion is that a steady field cannot
be axisymmetric. We had to emphasize that Cowling’s argument holds only for
exact axisymmetry. Departures from axisymmetry may allow a dynamo to work.

2.2  Dynamo Theories

In dynamo theories a magnetic field is maintained by currents induced in a plasma
by its motion across lines of force. In this point of view we consider the basic physic
of the interaction between plasma and magnetic field. To see this we start by writing
down the relevant magneto-hydrodynamics (MHD) equations:

0B
W:—VXE, (4)
VxB/p=], ()
E=j/c —uxB, (6)

where B is the magnetic field, E is the electric field, u is the velocity, o the electric
conductivity, g the magnetic permeability and j the electric current respectively. By
using equations (5) and (6) we rewrite the induction equation:

0B

E:Vx(uxB)—l—nVQB, (7)

where n = 1/(po) is the magnetic diffusivity (for u = 0 equation (7) is a diffusion
equation). We have also used the identity V x (V x B) = V(V-B) — V*B and the
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tion equation is the basic equation for magnetic behaviour in MHD; it determines B
once u is known. The basic physic is that the plasma velocity (u) and magnetic field
are the primary variables, determined by the induction equation, while the resulting
current (j) and electric field (E) are secondary and may be deduced from equations
(5) and (6) if required.

The equations we have set up in this subsection imply some relationships between
the different types of energy such as heat, electrical energy and magnetic energy.
First of all the divergence of the Poynting flux E x B may be transformed, using
equations (4) and (5), to

1
i
Its physical interpretation is that an inflow of electromagnetic energy E x B

V-(ExB):E-j—I—% (8)

produces electrical energy E - j for the plasma and a rise in magnetic energy B?/2u.
In turn, the electrical energy given to the plasma by the electromagnetic field may
be rewritten, after substituting for E from equation (6), as

2

E-j=. +u-jxB (9)
ag

This means that the electrical energy appears as heat by ohmic dissipation (turns
magnetic energy into kinetic energy or conversely) and work done by j x B force
(turns magnetic energy into heat).

The first term on the right hand side of the induction equation describes the
inducing effect of the motion of the fluid upon the magnetic field. The second term
describes the "ohmic” decay of the field due to the finite electrical resistance. We
may compare the two terms in equation (7) (to the order of their magnitudes) if we
replace the divergence vectors by their absolute magnitudes and the curl operator
by 1/1, where [ is the scale of field variation in space. We obtain

R, = —, 10
p (10)

as the ratio of the induction term over the decay term; R,, is called the magnetic

Reynolds number. Thus, this number measures the ratio of advective to resistive
effects for structures of size [ advected by velocities of the order of u. In solar physics
one often speaks of "high conductivity scenarios”. The precise meaning of this is
R, > 1 or that the time scale of ohmic decay (7 = 1?/n) is very much longer than
[/u which is the "advection time scale”.

A more specific and interesting topic is diffusion of a three dimensional magnetic
field by three dimensional turbulence and the behaviour of turbulent transport in
systems with very high magnetic Reynolds numbers.

Three dimensional turbulence allows one particularly important transport effect
which is not accessible with strictly two-dimensional motion: Even if the three
dimensional motion is perfectly incompressible (V - u = 0) there is in general a
divergence or a convergence of the flow along the magnetic field, which must be



Figure 2: The effect of increased numerical resolution on 3D-turbulent magnetic diffu-
sion. The left half was computed at a resolution of 64® while the right half was computed
at a resolution of 1283,

compensated for by a corresponding convergence or divergence of the velocity in the
plane perpendicular to the magnetic field. Thus, one may consider, over the entire
volume, the "perpendicular convergence”

—~V-u, =-V:(u—-B(u-B)/B? (11)

Apart from diffusive effects the quantity gives the exponential rate of growth of
the local magnetic field amplitude, following the field line motion;

Local and global maxima of this function are the places where the magnetic field
grows most rapidly with time. If the flow is sufficiently persistent, so that such local
maxima exist for times of the order of a turn-over time the local field strength has
time to grow exponentially, and thus form strongly localized concentrations.

Recently, numerical experiments [2] elaborated the diffusion of a 3D-magnetic
field by 3D-turbulence. In this case we can see (Figure 2) that even for high nu-
merical resolution ?, diffusion of an equipartition (F,,qgn & Fyin) strength magnetic
field is not suppressed.

The issue of a possible suppression of turbulent transport at high Reynolds num-
bers is of importance for attempts to understand the solar dynamo. First of all
because a significant turbulent diffusion would seem to be necessary to destroy the
dynamo field from one half-cycle to the next. On the other hand transport effects
such as the "alpha effect” could be suppressed in a similar fashion. But the gener-
ation of new field requires the existence of something like an alpha effect. Thus, we
could face a situation where both the growth and decay time scales would be much
too long to explain the solar dynamo.

What could be done about this interesting point of turbulent dynamo theory?
Eg. we could simply study the growth rate of a turbulent dynamo and see eg. whether

Zwe decrease the size of the dissipating structures which corresponds to high magnetic Reynolds
number
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one that grows with a time scale of the order of the turn-over time. We obtain

64x64x64 -> 128x128x128
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Figure 3: The effect of increased numerical resolution on turbulent dynamo action, in
an experiment with isotropic turbulence. The first part of the experiment is done with a
numerical resolution of 64, the second part with 128°. The dashed and dashed-dotted
lines are fits to the exponential growth of magnetic energy. The mid panel shows the
instantaneous and average growth rates, and the bottom panels shows the rate of energy
loss due to Joule dissipation (Nordlund et al. 1994)

some interesting results from such an experiment [2] in figure 3.

e The growth rate increases with higher numerical resolution (higher R,,).

e The growth rate increases even if the Joule dissipation time Fy,u5n/Q joule de-
creases. This is remarkable because the Joule dissipation time is shorter to
begin with than inverse of the magnetic rate.

11
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by the flow on the magnetic field and the Joule dissipation. Since the size of the
small scale magnetic flux tubes remains the same (on the average) over time these
two contributions (magnetic field work and resistive diffusion of plasma through
magnetic field) must be in close balance.

2.3  Turbulence and Flux Tubes

Additional factors that governs the turbulent transport of the magnetic field are
vorticity, magnetic flux tubes and buoyancy. More specific, flux and vortex tubes
are formed in the solar convection zone.

Vorticity is defined as the curl of the velocity w = V xu and is thus a quantitative
description of the rotation of the velocity field. A vortex tube has a spiraling of fluid
towards the center of the tube and out along the tube [1] and thus vorticity meassures
the angular momentum of the fluid around the rotational axis of the vortex tube.

Magnetic flux tubes arise as concentrations of the magnetic field on a fast time
scale in a general 3D magnetic field. There is an intimate connection between the
strong magnetic field and the turbulent motions inside the tube (Figure 4; in this
figure we can see that there is a strong coupling between vortical and magnetic
phenomena). In Figure 4 a vortex tube (light surface) is closely overlapped by a
flux tube (dark surface) with magnetic fieldlines running pretty much in parallel. At
the end of the flux tube (center and right) the fieldlines spread out, connecting to
another coherent structure (a flux tube). The intermediate field is relatively weak

and diffuse.

Figure 4: Visualization of the results of a numerical simulation of the magneto-
hydrodynamical equations.

The fundamental paper by Parker [4] suggests that when a flux tube is formed it
rises by magnetic buoyancy and produces a sunspot where it breaks the photospheric
surface. When such a rising tube creates a pair of spots — when it is 7)”-shaped
— flux erupt from the region between these newly formed spots in the form of a
bipolar loop structure.

12
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more concentrated than that of the other so that only a single "unipolar” visible
spot is formed.

The smallest magnetic phenomena on the Sun which can be distinguished in
white light are the "pores”. Pores can be almost as dark as sunspots but have no
penumbra and are generally much smaller. Almost invisible in white light but very
similar in their magnetic structure are the magnetic "knots”. The magnetic knots
represent the intersection of magnetic flux tubes with the surface of the sun with
fields of 1100 - 1400 G (Beckers and Scroter 1968). An important clue to the cause
of the attraction is that it extends only to magnetic flux tubes nearly arriving at the
surface. Once there no new flux tubes arriving at the surface the knots lose their
mutual attraction and begin to move apart (as one would expect them to do).

The importance of the magnetic buoyancy effect on magnetic flux tubes can be
estimated from the size of the density deficit

pe—pi _ Bim
pe 2up. kT’

(13)

At a distance 20 Mm below the photosphere the magnetic buoyancy is small (p. —
pi)/pe & 107°. On the other hand at only 1 Mm below the photosphere one may
take (p. — pi)/pe = 0.004. Therefore the buoyancy force is much stronger in the
upper part of the convection zone. Long-term flux storage seems possible at the
bottom of the convection zone or in the convectively stable layer immediately below
(Spiegel and Weiss, 1980). It is therefore now generally believed that much of the
dynamo operates near this boundary between the radiative core and the convection
zone of the sun. Another interesting task is to explore the dynamical effects of

Figure 5: The top slice of a deep solar model is shown: The vertical velocity component
u, (black is minimum and white is maximum). A granulation pattern is clearly seen to
occur as a consequence of convection.

external turbulence on an isolated tube of flux. The flux tubes observed in the Sun
are confined by the converging flows on the surface to the convective downdrafts
between granules and supergranules (see Figure 5 for a model of this). Thus they are
subjected to downward drag by the external turbulence (the turbulent external fluid

13
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of the fluid within the tube partially evacuating the interior and compressing the
magnetic field.

An additional effect is due to the association of flux tubes with cool spots at the
surface. This fills the flux tubes with entropy deficient fluid. A consequence of this
is the reducing of the buoyancy otherwise associated with a concentrated magnetic

field.

3 Dynamo Action

The dynamo problem may be divided into some interesting subdomains. We shall
make a brief description of kinematic, mean field and magnetohydrodynamic dy-
namos.

3.1 Kinematic dynamo

In this dynamo model we neglect all the feedback of the magnetic field on the fluid
flow topology. In paragraph (2.2) we formed and described some basic properties
of the induction equation. If we have a prescribed velocity field which goes into
this equation we get a magnetic field. We can simply study the growth rate of the
magnetic field to obtain (or not to obtain) a dynamo process. If the magnetic field
has a positive growth rate then we have dynamo action. One says the dynamo is
"fast” when the growth rate remains finite in the limit of zero electric resistivity g
(that means we refer in regions with large magnetic Reynolds numbers). On the
other hand the dynamo is "slow” if the growth rate approaches zero.

3.2 Mean Field Dynamo

In this section we seek a solution to the dynamo problem in terms of a mean magnetic
field. Thus, it would be nice to keep in mind Parker’s suggestion: the net effect of
averaging many small-scale convective motions would be to produce the large scale
electric field and so allow regeneration of the poloidal magnetic field. Hence we write

B=<B>+b, (14)

where < B > is an average over longitude or more generally as an ensemble average.
The field b is the fluctuating part of B and obeys < b >= 0. We also write the
velocity as a sum of a global mean and a fluctuating part.

Substitution of equation (14) (and the corresponding equation for the velocity)
into the induction equation (7) and separation of the mean and fluctuating parts
yields two partial differential equations for the mean and the fluctuating field re-
spectively. The mean field equation becomes:

J0< B>

Y =Vx(<v>x<B>+4+Q—-17Vx <B>), (15)

14
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@ =<uxb>. (16)

The crucial quantity is the mean electric field Q. If we knew this quantity we could
solve (15) for < B >. In general one could imagine a linear relationship between Q
and < B > (also between b and < B >). In the case where b represents ”weakly”
isotropic turbulence we write the latter relationship as an expansion:

Q=a<B>-xVx<B>, (17)

where a and [ are constants. Substitution of (16) into (12) yields the mean field
induction equation:

Jd< B>

5 =Vx(<v>x<B>4a<B>—-(n+p)Vx<B>) (18)

The term @ < B > represents the mean electromotive force due to turbulent
flow ("alpha effect”). This term ensures that the solution < B > is not subject to
the antidynamo theorem mentioned in the preceding sections. On the other hand
side term [ describes the diffusion of the magnetic field due to the turbulent flow.

Equation (18) represents the so-called "o —w” dynamo because the term < v >
x < B > generates toroidal field from a poloidal field due to the differential rotation
of the sun and o« < B > generates poloidal field from a toroidal one due to the tur-
bulent flow. The mean field induction equation has been the basis for much work on
the solar dynamo and even for the terrestrial and for stellar dynamos. But although
some results have been obtained it is neccesary to remember the assumptions and
approximations involved here: There is not any physics that predicts the value of
the a. In fact, to reproduce the solar cycle length (22 years) one has to use a very
small « of the order of 1072, but the "observed” « is much larger (in the order of
unity)! Additionally, why should it be relevant to make great ado about calculating
a global mean field when the physics of the dynamo effect is maybe taking place at
a smaller scale?

3.3  Magnetohydrodynamic Dynamo

The more direct approach to model the solar dynamo would be by simulating the
basic physical conditions that we know the Sun is subjected to. We have to take
into account the feedback of the magnetic field on the fluid motions and we have
to examine the detailed dynamical behavior of the magnetic field and the turbulent
motions of the plasma.

The basic equations for the fully developed case of MHD dynamo are conservation
of mass, momentum and energy and the induction equation, Ampere’s Law and the
general Ohm’s Law in the form:

— =-V- pua, (19)

15
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ot
0B
—=—-VxE 21
VxB=j, (22)
E =7nj—uxB, (23)
0
a_: =—-V. (eu + Fdsz) — PV-u + QTad + Qvisc + QJoulea (24)

where p are the density, u velocity field, B magnetic field, E electric field, P gas
pressure, n electric resistivity, j electric current, 7 viscous stress tensor, e internal
energy, Fy¢s diffusive energy flux, (),,q4 radiative energy transfer, (), viscous and
Q) joule Joule dissipation respectively.

The first equation describes the conservation of mass for a in general compressible
fluid. The second equation describes the conservation of momentum pu (per unit
mass). On the right-hand side of this equation we include the gravitational force,
the centrifugational force, the Lorentz force and the Coriolis force. The symbol uu
is the tensor with the elements u;uj; and w is the angular velocity (vector). The
other three expressions is just the Maxwell equations allready discussed.

Finally we need an equation to specify the transport of energy. Equation (24)
specify the rate of change of internal thermal energy density e. On the right-hand
side of this equation we have the divergence of the energy flux term that transport
heat to a volume element and work and dissipation terms which change other energy
forms into heat in the volume. Thus, the rate of internal thermal energy density
must be equal to:

0
a_: =—-V-.F + Wgas + Qrad + Qvisc + QJoulea (25)
where
“V-F=-V-(eut Ppynt) +u-VP — PV -u, (26)
Wyas = —u - VP. (27)

This equation completes the set of the MHD equtions.

The modeling of the dynamo process by using the full MHD equations can only
be done rightgeously on super computers. Many numerical experiments have been
carried out on massive parallel super computers like the Connection Machine at
UNI-C (eg.[2]). The programming code is, in the case of the Connection Machine,
a specially developed CM-Fortran code (by [3]). All the figures in this paper have
been constructed from data that have resulted from different versions of this code.

4 State of the art

Today we have reached a point where we by using fast computers (both graphically
and computationally) can gain knowledge about such complicated processes as the

16
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We can construct a realistic model of the Sun (or of an accretion disc) using the
most basic equations that are describing this system: The magneto-hydrodynamic
equations together with an equation of state. We then run this model on a fast
supercomputer and get a lot of data which we can visualize on the best graphics
workstations.

This procedure enables us to gain considerable understanding about the physical
processes that are involved in eg. the dynamo process and that is — after all — what
we are really seeking: Understanding.

In the rest of this section we shall try to outline what it is that we do not
understand and try to give some hints for the direction in which to find the answers.

A simple question that nevertheless does not have a simple answer is the following

e Q: How does the reversal of the sun’s polar field work.
The standard answer would probably be this:

o A: Great unipolar magnetic field exists like spots on the surface of the sun.
These fields drift — like sunspots depending on their polarity — either towards
the poles or towards the equator. Those that drifts to the poles will gradually
cancel the polar field and eventually reverse it.

The truth however is that we actually don’t know it. It is possible to pin the question
further down:

o (): Why do fields drift like they do? Because of magnetic buoyancy one should
think that when a field (a flux tube) rises through the atmosphere it would
just keep on rising unless it was somehow anchored to the ’global’ toroidal
field at the bottom of the convection zone. On the other hand - the fields do
drift and over large areas too, so how can they be anchored?

o A: Maybe the flux tubes act like straws in a river: Once the roots have rot-
ten away the straw floats freely just as if it was standing with some tilt?
Maybe when a strong field starts rising from the bottom of the convection zone
somekind af instability occurs and this field breaks ’loose’ and form an inde-
pendent loop structure that can float freely.

e Q: How do the flux tubes actually rise? And when they rise, how can such a
strong toroidal field exist at the bottom of the convection zone?

o A: One might think that the coupling between descending convective elements
(plumes) and the magnetic flux tubes that finds themselves near the photosphere
and thus have low entropy because of surface cooling, would constantly add low
entropic tubes to the relatively strong fields at the bottom of the convection
zone. Thus the field would be stable against buoyancy.

These questions are very relevant to the understanding of the solar dynamo process
and many people are trying to answer them — among other things — by performing

numerical simulations of very high accuracy eg. [2], [1].

17



E L AT A W A A .

[1] S.B.F. Dorch and A. Nordlund. On the formation of vortex tubes. A&A(in
preparation), 1995.

[2] A.. Nordlund, K. Galsgaard, and R.F. Stein. Magnetoconvection and magneto-
turbulence. In R.J. Rutten and C.J. Schrijver, editors, Solar Surface Magnetic
Fields, volume 433, NATO ASI Series, 1994.

[3] A. Nordlund and R.F. Stein. 3-d simulations of solar and stellar convection and
magnetoconvection. Computer Phys. Communications, 59:119, 1990.

[4] E.N. Parker. Hydromagnetic dynamo models. Ap.J., pages 293-314. 122, 1955.
[5] E.N. Parker. Cosmical Magnelic Fields. Clarendon, Oxford, 1979.

[6] E. Priest. In Solar Magnetohydrodynamics. Reidel, 1984.

18



